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Abstract: The total quantity and energy delivered through a gas grid is calculated using simple formulas that sum

the increments measured at regular time intervals. These calculations are described in international standards

(e.g., ISO 15112 and EN 1776) and guidelines (e.g., OIML R140). Currently, in the evaluation of the associated

measurement uncertainty, the measurement results that enter into the calculation are assumed to be mutually

independent. This assumption leads to underrating of the measurement uncertainty. There is a growing concern

among transmission and distribution system operators that this assumption and the obtained values for the

measurement uncertainty are not fit for purpose when fluctuations in gas quantity and quality increase, which

occurs when injecting renewable energy gases such as hydrogen and biomethane. In a project in the European

Partnership for Metrology programme, “Metrology for the hydrogen supply chain”, the underlying assumptions

of these uncertainty evaluations are revisited and reworked to be more adequate. The dependence of measurement

results coming from, e.g., the same flow meter and gas chromatograph will be assessed for correlations, as well

as other effects, such as the effect of the chosen mathematical approximation of the totalisation integral, and

fluctuations in flow rate and gas quality. In this paper, an outline is given for the improvements that can be

made in the measurement models to make them more responsive to the error structure of the measurement data,

temporal effects in these data, and the fluctuations in gas quality and gas quantity.

Keywords: natural gas; hydrogen; flow rate; gas composition; correlation; integration error; serial correlation

1. Introduction

The primary purpose of measuring the quantity (i.e., mass or volume) and selected gas properties
of energy gases is to enable financial transactions between buyer and seller. In this paper, we will call
these measurements “fiscal measurements” and the related processes “fiscal metering”. It typically
involves the measurement of the flow rate of gas at specified times, and if the transactions are based
on energy, the measurement of the calorific value, or more formally, the enthalpy of combustion of the
gas passing the sampling point. There are several standards and guidance documents describing fiscal
metering of energy-containing gases, e.g., OIML-R140 [1], EN 1776 [2] and ISO 15112 [3]. The models
used in these guidelines are very similar, and so are the requirements that measurement equipment
shall be calibrated and that measurement results shall be metrologically traceable.

The models used for calculating the volume or energy delivered generally sum the volume or
energy increments over time [3][clause 10]. With regard to the evaluation of measurement uncertainty,
usually it is assumed that the quantities of interest (e.g., volume and calorific value) are mutually
independent, and essentially normally distributed. Whereas the latter assumption is usually unprob-
lematic, the assumption that the measurement results are mutually independent is only valid under
quite peculiar conditions. These conditions include (1) steady-state with respect to flow rate and
composition of the gas stream and (2) negligible systematic effects in both the flow meter and the
device used for measuring the calorific value (often a gas chromatograph (GC)). Any violation of these
conditions will give rise to an increase of the measurement uncertainty.

Steady state conditions with respect to flow rate and composition in gas grids are rare. Due to
fluctuations in supply and demand, flow rates differ and the use of different kinds of natural gas give
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rise to fluctuations in composition. In an era, where gas grids are facing a further diversification of
the gas entering into the grid (e.g., biomethane, hydrogen, natural gas import) and the fluctuations
also increase, it is obvious that this diversification contributes to an even greater violation of these
assumptions. The issue is that the current guidance to some extent acknowledges these issues [3],
but the measurement models and the uncertainty calculations do not take the effects of the practical
measurement conditions into account.

In the project called “Metrology for the hydrogen supply chain” (Met4H2) [4] in the European
Partnership of Metrology programme, one objective is devoted to developing

novel methods for the evaluation of measurement uncertainty along the supply chain, namely
with regard to the measurement of quantity, and energy and impurity content of hydrogen
and hydrogen blends

The associated work is structured to start with natural gas (for which abundant experience and data
are available) through hydrogen-enriched natural gas (blends of hydrogen from renewable sources
and natural gas) to grids with hydrogen only.

To fully understand this objective, it is important to reiterate that internationally agreed guid-
ance of the evaluation of measurement uncertainty, the Guide to the expression of Uncertainty in
Measurement (GUM) requires the evaluation of any covariances between dependent input quantities
[5][clause 5.2]. This evaluation of covariances is perceived by many as difficult, yet it can make the
difference between a realistic value for the uncertainty and an unrealistic one [6]. A realistic value for
the uncertainty is required for both gas allocation purposes (i.e., the quantity and energy balance in
the grid), as well as to demonstrate conformity with regulatory and contractual requirements.

In this paper, an overview of the ideas behind the envisaged model improvements is given. The
overview focusses on three aspects, (a) the effects due to the measurement of the relevant parameters
(Section 2), (b) temporal effects (Section 3) and (c) the approximation of the total volume, mass, or
energy by a summation of increments (Section 4).

2. Volume, Mass and Energy Measurement

2.1. Framework

The basis for computing the total mass, volume and/or energy is given in ISO 15112 [3]. For
the total mass and volume, the flow rate as a function of the time is the key input. The evaluation of
measurement uncertainty is described in several ISO standards [7–10]. Such methods for evaluating
measurement uncertainty are the fundament for evaluating the measurement uncertainty associated
with the total mass or volume of the gas metered.

For the measurement of energy, the calorific value, again measured as a function of time comes
into play, supplementary to what was stated previously for measuring the total mass or total volume.
The calorific value can be measured directly using a calorimeter or some other inferential device [11],
or by measuring the composition by gas chromatography [12,13] followed by a computation of the
calorific value using ISO 6976 [14]. The standards ISO 6974 and ISO 6976 provide the methods for
evaluating the measurement uncertainty associated with the calorific value.

There are many possible configurations and approaches to the measurement of energy [3], but for
the modelling it is sufficient to start with a simple configuration. Such a configuration could consist of
one flow meter, one temperature transmitter, a pressure transmitter and a gas chromatograph. Such a
configuration suffices to outline the relevant improvements to the uncertainty evaluation. Once the
methods for obtaining a credible uncertainty statement have been developed for this instance, these
methods can be applied to more complex configurations and used in gas networks, for example for
gas allocation.

Evaluating dependencies between input quantities in measurement models [15] is a requirement
[5,15] and it can make the difference between a credible uncertainty statement and a serious under-
or overrating of the measurement uncertainty. The evaluation of correlations in measurements is, for

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2024 doi:10.20944/preprints202412.0011.v1

https://doi.org/10.20944/preprints202412.0011.v1


3 of 10

example for measuring the calorific value through GC well established and covered by the relevant
standards [12–14].

Relative little attention is being paid in the literature to correlations arising from using the same
equipment for obtaining a sequence of measurement results. Most examples on uncertainty evaluation
[5,16–19] and relevant standards [7–10,12–14] deal with a single measurement. As the uncertainty
budget of a measurement result contains contributions in common with any following measurement
result (e.g., from calibration), such results are always mutually correlated. A method for evaluating
such correlations is using the uncertainty budgets of a pair of measurement results [6] which is in turn
based on Annex F of JCGM 100 [5]. From the uncertainty budgets, the variables in common can be
identified and these contribute to the covariance between the pair of measurement results.

2.2. Mass

The mass of gas delivered over a time period can be obtained by integrating the mass flow rate as
a function of time, viz.,

m(tj) =
∫ tj

t0

Qm(t)dt, (1)

where Q(t) denotes the mass flow rate as a function of time and t0 and tj the end points of the time
interval. In practice, this integration is replaced with a summation, i.e.,

m(tj) = ∆t
N

∑
i=1

Qm,i, (2)

where N denotes the number of mass flow measurements in the time interval tj − t0, and it is assumed
that the flow rate measurements are made at regular time intervals. Usually, the standard uncertainty
of m(tj) is obtained using the law of propagation of uncertainty (LPU) for uncorrelated input quantities
[5][eqn. (10)]. If the flow rate measurements are dependent, the standard uncertainty of m(tj) can be
readily obtained using the LPU for correlated input quantities [5][eqn. (13)], or, alternatively, the LPU
for multivariate measurement models from JCGM 102 [18]. The formulation of the LPU in the latter
document is already in vector-matrix notation, easing the implementation in computer software. The
covariances can be obtained readily from the uncertainty budget for any pair (Qm,i, Qm,j), (i ̸= j).

2.3. Volume

The treatment of volume is very similar to that of mass. The gas delivered over a time period can
be obtained by integrating the volume flow rate as a function of time, viz.,

V(tj) =
∫ tj

t0

QV(t)dt, (3)

where QV(t) denotes the volume flow rate as a function of time and t0 and tj the end points of the
time interval. In practice, this integration is replaced with a summation, i.e.,

V(tj) = ∆t
N

∑
i=1

QV,i, (4)

where N denotes the number of volume flow rate measurements in the time interval tj − t0, and it is
assumed that the flow rate measurements are made at regular time intervals. The gas volume, as well
as the volume flow rate, are pressure- and temperature dependent. In the calculations for volume,
the volume flow rate is converted from actual conditions (pressure p and temperature T during the
measurement) to reference conditions [20]. These reference conditions differ between countries, but
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have in common that they are fixed and without uncertainty. The conditions p, T are measured and
hence have uncertainty. The correction factor is given by [3, Annex C]

QV,0

QV,act
=

pT0Z0

p0TZ
, (5)

where Z denotes the compressibility factor. The pressure, temperature and compressibility factor
at reference conditions are denoted by the corresponding symbols adorned with a subscript 0. The
compressibility factors in equation (5) are functions of the gas composition [21,22]. Usually, different
models are used at actual conditions and reference conditions. At reference conditions, often ISO 6976
[14] is used, whereas at actual conditions equations of state are used like AGA8 [23,24] or the GERG-
2008 [22,25]. Instead of calculation from the gas composition, the compressibility factor can also be
obtained from a measured density using the real gas law, provided that the molar mass of the gas is
known.

Given the circumstance that the total volume needs to be computed at a single pressure and tem-
perature, which are usually taken as the reference conditions [3,20], the propagation of the uncertainty
for the total volume is markedly more difficult than for the case of the total mass. On the other hand,
applying the LPU to equation (4) is not much different from that to equation (2). Only the evaluation
of the covariances between pairs of (QV,i, QV,j), (i ̸= j) is more involved, as the covariance arising
from the conversion factors from equation (5) comes into play.

2.4. Energy

The energy of a gas flow is calculated from the basic differential equation [3]

e(t) = H(t) · Q(t), (6)

where e denotes an energy increment, H the calorific value and Q the flow rate of the gas. Equation (6)
underlines that all quantities are functions of time. When using mass flow, the calorific value in
equation (6) is also on a mass basis, and when using volume flow, the calorific value is that of a real
gas at volume basis. The reference conditions for the calorific value can be different from those of the
flow metering [14]. Hence, the energy over a time interval [t0, t1] is obtained by integration [3]

E(tj) =
∫ tj

t0

H(t)Q(t)dt. (7)

From a physical point of view, it is reasonable to expect that H(t) and Q(t) are continuous functions.
Even if for example a rapid change in the gas grid takes place, it takes some time before this change is
palpable in full in the measurement results obtained. In reality, flow meters, GCs make measurements
at regular time intervals, so all that can be learnt from the functions H(t) and Q(t) are these snapshots.

For the energy determination during 1 h, the following two procedures are provided (see also
paragraphs 7.2.2.1 and 7.2.2.2 in ISO 15112):

— multiplication of the calculated volume under reference conditions with the averaged calculated
calorific value of the same hour;

— in situ energy calculation in the volume-conversion device using the actual measured entities
for the calculation of energy based on the calculation of Qj and Hj, followed by summing these
single energy quantities over 1 h.

The latter approach approximates the integral in equation (7) by increments over a period of time ∆t,
i.e,

E(tj) = ∆t ·
N

∑
i=1

HiQi, (8)
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where it is assumed that the uncertainty associated with ∆t is negligible in relation to the uncertainty
associated with the summation of the increments. N denotes the number of increments in the period
tj − t0.

Using the LPU for uncorrelated input quantities [5, eqn. (10)],

u2(E) = (∆t)2

[
N

∑
i=1

H2
i u2(Qi) +

N

∑
i=1

Q2
i u2(Hi)

]
, (9)

where the argument tj was dropped for brevity. If there only exist correlations among the Qi and
the Hi separately (so, the covariance between any pair of (Qi, Hj) would be zero), then the standard
uncertainty associated with the energy can be obtained from

u2(E) = (∆t)2

[
N

∑
i=1

H2
i u2(Qi) + 2

N−1

∑
i=1

N

∑
j=i+1

Hi Hju(Qi, Qj)

+
N

∑
i=1

Q2
i u2(Hi) + 2

N−1

∑
i=1

N

∑
j=i+1

QiQju(Hi, Hj)

]
. (10)

At first glance, one might think that equation (10) addresses all correlations. When realising that
the volume flow rate was converted from actual to reference conditions [20], it becomes apparent
that the Qi in equation (10) are correlated through the ratio of the compressibility factors Zact (actual
conditions) and Zref (reference conditions) dependent on the results of the GC analysis, as is the
calorific value [14]. So, the correlation coefficient between Qi and Hi would then be non-zero.

3. Temporal Effects

The discussion of the measurement uncertainty so far addressed the uncertainty due to the
measurement of flow rates and the calorific value. So, the uncertainty evaluated using equation (10)
only addresses (in part) the measurement. Under steady-state conditions, the uncertainty evaluation
presented in section 2 may provide a reasonable value for the uncertainty.

In practice, gas grids are used to support suppliers and users of gas, and notwithstanding that
supply and demand are balanced, variations in measured flow rates and calorific values occur. In
distribution grids for example, it can be expected that the demand is subject to a day-and-night
rhythm, which might look like a sinusoidal signal. This variability should somehow be taken into
account, as it affects the mean [15][clause 11.7] of, say, the flow rate, and by implication thus the
total calculated as the sum of the increments (see Figure 1). The example given in JCGM GUM-6
shows a sinusoidal effect on the temperature of a water bath and the difference in uncertainty using a
proper time-series model [26] and a naive type A evaluation assuming mutual independence of the
observations [5][clause 4.2]. Periodical effects do not only occur in gas networks, but for example also
in water networks [27][example E4.1].
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Figure 1. Schematic of the effect of dynamics on the mean and total volume measured in a metering
line.

Intuitively, one would expect that the obtained measurement results for flow rates and calorific
values become more uncertain with increasing dynamics in fluid flow and diversity of energy gases
transmitted or distributed. Also, the magnitude of ∆t plays a role here. In a gas grid with dynamics,
one would expect that the uncertainty of a calorific value taken as representative for a day to be more
uncertain than one taken each 5 min.

Time series models can be fitted using frequentist [26] and Bayesian methods [28,29]. An important
aspect in this description of the data is to find an acceptable model for the features in the data. The use
of time series analysis may need data driven modelling to be useful. Deliberations such a model choice
play then also a role here in the uncertainty evaluation [15][clause 11.7] as well as model uncertainty
[15].[clause 11.10]

4. Totalisation

Finally, the question arises to what extent the summations in equations (2), (4) and (8) approximate
the integrals in equations (1), (3) and (7). The issue is visualised in Figure 2. The coloured area is the
calculated total and the area under the blue curve is the “true” total. In this example, the measurements
are taken at time intervals of 10 min. With the same principle, the approximation would be better if the
measurements had been taken with a higher frequency, say, every 1 min.
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Figure 2. Numerical approximation of the integration of metering data using the approach of ISO 15112.

Apart from the time resolution of the measurements, also the dynamics in the grid come into
play in this uncertainty component. A measurement result becomes less representative for a time
interval if in this interval there are substantial changes in the quantity measured. A practical difficulty
can be that one has little clue of such changes (there are no measurements), yet, using the principle
of the type B evaluation of measurement uncertainty [5][clause 4.3], it should be possible to elicit a
probability density function (PDF) based on the knowledge at hand. In a gas grid, there are more
metering points, and also previous experience can under some circumstances be applied to evaluate
the measurement uncertainty arising due to changes in the grid.

For various approaches of numerical integration [30,31], the error due to approximation of an
integral by a summation is discussed. A practical issue with using these deliberations is that the solid
curve in figure 2 is not known, so it is not possible to use such approaches to guess the error due to
totalisation. Faster, even approximate measurements of the same or related quantities might help in
evaluating this uncertainty component.

5. Discussion and Outlook

In this paper, several shortcomings in the current uncertainty evaluation of the total mass, volume
and energy in gas grids are presented. Current models and standards assume that the measurement
data are independent. Based on simple deliberations, it is shown that this assumption cannot be
right. Whereas the uncertainty contributions due to temporal effects and approximating the integral
by a summation can be small under steady-state conditions, these uncertainty contributions can be
substantial with a greater diversity of gases (e.g., biomethane, hydrogen, natural gas of different
origins) in gas grids and with larger fluctuations in supply and demand.

Whereas efforts are made to balance the grid to ensure supply of gas of adequate quality, such
efforts cannot make up entirely for the dynamics in the gas grids. In the ongoing transition from fossil
natural gas to renewable gases, practices for fiscal metering need urgently to be improved to ensure
that these grids can be operated safely and efficiently.

The third shortcoming, the correlation effects between measurement results coming from a single,
calibrated instrument are relatively straightforward to capture with the framework of the Guide to
the expression of Uncertainty in Measurement. Considering the large volumes of data, the use of
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vector-matrix algebra as described in JCGM 102 [18] is commended to obtain compact computer code.
This approach has as additional advantage that measurement models can be broken up in parts more
freely, as the law of propagation of uncertainty for multivariate measurement models provides by
default a full covariance matrix, so that all covariances can be readily propagated from one stage
of the measurement model to the next. With the legacy GUM [5], this is much more difficult, as it
presumes that a measurement model can be broken up in expressions with mutually uncorrelated
input quantities.
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