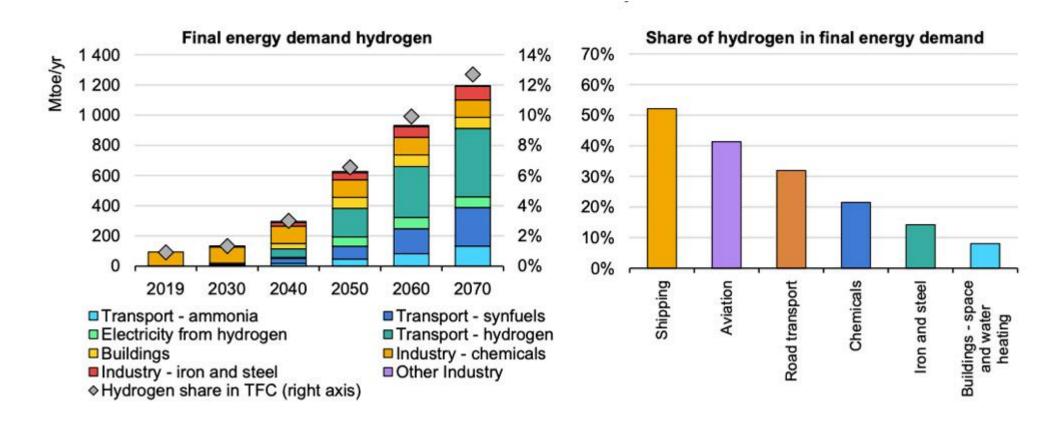


METROLOGY FOR THE HYDROGEN SUPPLY CHAIN – FINAL STAKEHOLDER WORKSHOP

Adriaan M.H. van der Veen (VSL) 18 September 2025 21GRD05 Met4H2 M36 Workshop

INTRODUCTION AND RATIONALE

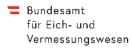
MET4H2


- "Unless there are rapid and large-scale reductions in greenhouse gas emissions, limiting warming [...] to 1.5 °C will be beyond reach" [IPCC, 2021]
- European Green Deal (EGD) is Europe's response to decarbonise energy use and to shift to renewable energy sources
- Hydrogen, produced from electricity from renewable sources, is at the centre of this energy transition
- Without access to gas grids, a substantial part of the EU agenda on greening the energy supply cannot be carried out
- Project addresses immediate needs: safety, conformity with specifications and regulations, and billing

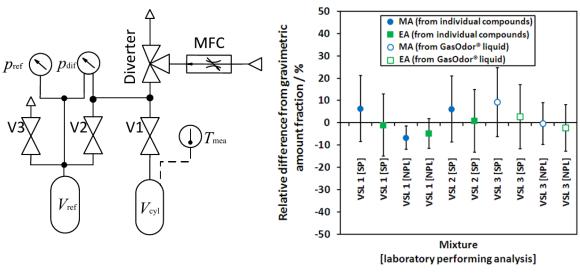
WE NEED TO GET STARTED NOW!

Source: IEA, Energy Technology Perspectives, 2020

METROLOGY FOR THE HYDROGEN SUPPLY CHAIN (MET₄H₂)

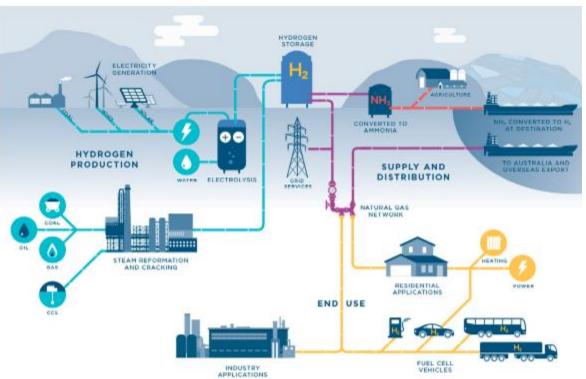

- Response to needs when introducing hydrogen into (natural gas) grids
- 27 partners, project started 1 October 2022 and will last 3 years
- Objectives:
 - To develop calibration and measurement methods in view of safety, process efficiency and environmental issues
 - 2. To develop measurement standards to enable calibration and validation of **flow metering** equipment
 - To develop and improve measurement standards and methods for validation and performance evaluation of **gas quality measurement** methods for hydrogen, for impurities, e.g., oxygen, hydrogen sulfide, moisture content, and for reactive components such as hydrogen chloride and chlorine.
 - 4. To develop novel methods for the evaluation of **measurement uncertainty** along the supply chain regarding the measurement of **total quantity, and energy** and impurity content of hydrogen and hydrogen blends.

PARTNERS



HEALTH, SAFETY AND ENVIRONMENT

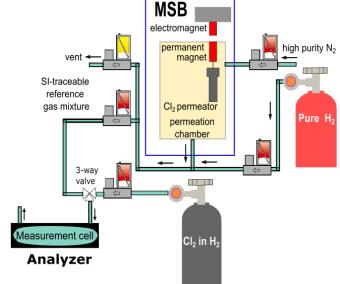
- Primary standards for leak flow rate measurements (10⁻⁶ to 10⁻⁹) mol s⁻¹
- Characterisation methods for permeation analysis of sealings, liners etc. at (-40 to 120) °C, (0.1 to 10) MPa, (10 to 90) % RH
- Validation protocols and test rigs for hydrogen sensors (hydrogen and impurity content)
- Measurement standards for measuring odorant levels in hydrogen-enriched natural gas and hydrogen (sulfurous and sulfur-free odorants)

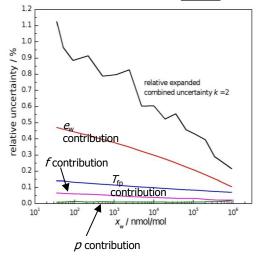


FLOW MEASUREMENT

MET4H₂

- Overview of the state-of-the-art in flow metering of hydrogen and hydrogen blends
- Intercomparison of flow measurement standards for hydrogen-enriched natural gas
- Flow standards for domestic gas meters for hydrogen, including assessment of impurity impact (up to 2 %)
- Development of metrological traceability chains for large-scale hydrogen transportation

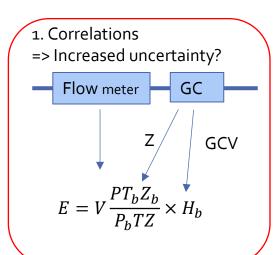


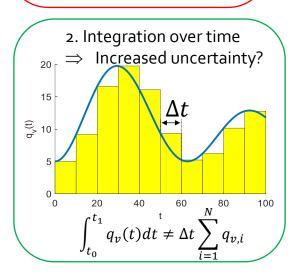


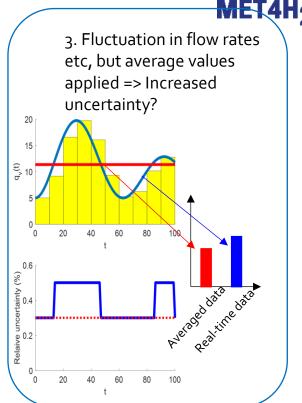
HYDROGEN QUALITY

MET4H₂

- Development of gas sampling methods for online and offline use
- Humidity standards for the amount fraction water in hydrogen (up to 6 MPa)
- Measurement standards for impurities typical for alkaline electrolysers (e.g., chlorine, hydrogen chloride, and water)
- Measurement standards for hydrogen quality during transportation (e.g., odorisation compounds, ammonia)







UNCERTAINTY IN FISCAL METERING

- Development of a framework for the uncertainty evaluation of the total quantity and energy provided
- Evaluating serial correlation in flow and energy
- Uncertainty of approximating the timeintegration by a summation
- Risk: assuming independence makes that uncertainty shrinks with more observations than actually justified
- At the end of the day: non-credible uncertainties

PROGRAMME OF TODAY

- Timings of the lectures will be as distributed in the agenda
- Please switch off your microphone and camera when not speaking
- You can post questions in the chat, or ask them after the talk

Have a pleasant day!

Thank you for your attention!

Interested? Contact us at

avdveen@vsl.nl!

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EURAMET. Neither the European Union nor the granting authority can be held responsible for them.

The project has received funding from the European Partnership on Metrology, co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.

EUROPEAN PARTNERSHIP

21GRD05 - Metrology for the hydrogen supply chain

M36 Stakeholder meeting

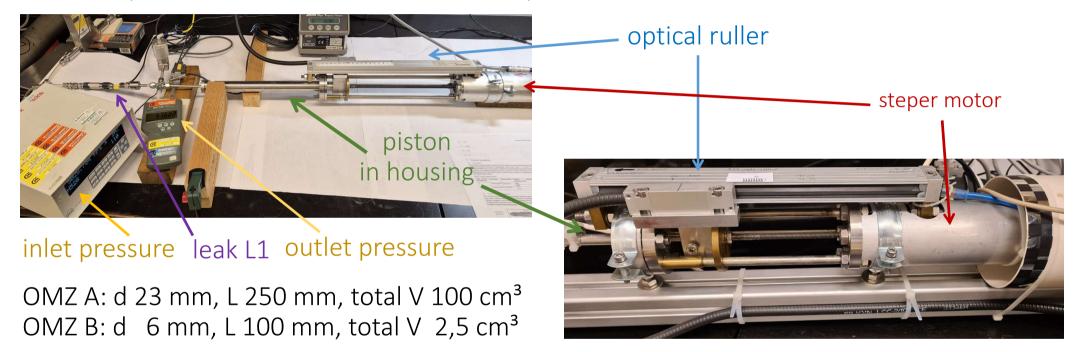
Assessment and comparison of different methods to establish traceability for the measurement of hydrogen leak rates flowing to atmosphere in the range 10⁻⁹ mol/s to 10⁻⁶ mol/s

September 18th 2025

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EURAMET. Neither the European Union nor the granting authority can be held responsible for them.

EUROPEAN PARTNERSHIP

The project has received funding from the European Partnership on Metrology, co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.

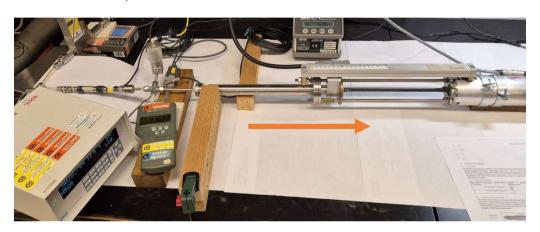

Overview

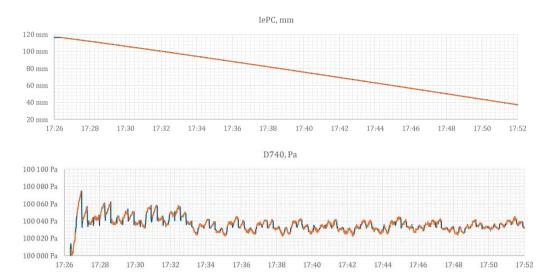
- Developed flow standards (0.003 to 1.3 sccm)
 - CMI
 - CNAM
 - LNE
 - UL
- Transfer standards and characteristics
- Comparison
 - Calibration procedure
 - Results
- Conclusion

CMI Flow standard: constant-pressure flowmeter

CMI Flow standard: constant-pressure flowmeter

Constant-pressure flowmeter OMZ consists of 2 pistons with nominal diameters 6 mm and 23 mm.




Each piston is equipped with opto-electronic position sensing and a stepper motor ensuring the movement of the piston relative to the housing.

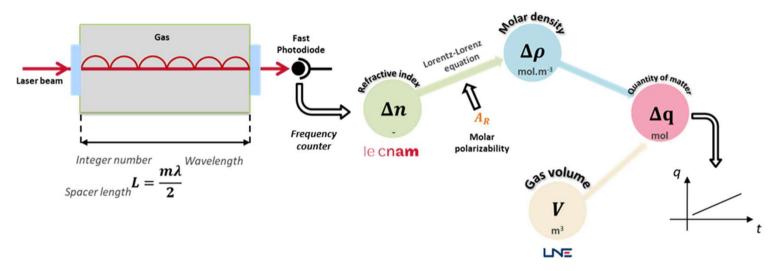
The pistons are sealed against the housing with a Teflon seal with a rubber insert.

CMI Flow standard: principle

Constant-pressure flowmeter.

The volume of hydrogen flowing into the flowmeter from the calibrated leak is compensated by continuously extending the piston from the housing.

The piston position over time, the system pressure, and the temperatures of key system components are recorded.


Based on changes in pressure in the flow meter, the piston extension speed is adjusted to keep the pressure constant.

CNAM Flow standard based on refractometry

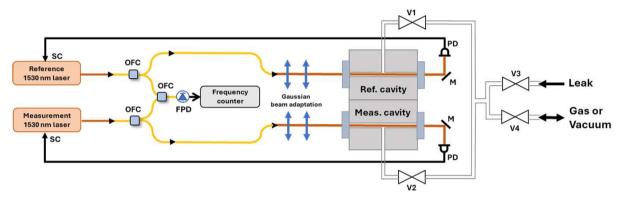
Fabry-Perot refractometry for leak detection at atmospheric pressure (10⁻⁷ to 10⁻⁹ mol/s) [1/4]

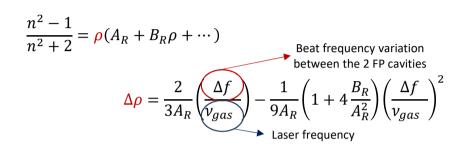
Measurement of variation of density and volume leads to quantity of matter variation over time

Lorentz-Lorenz equation

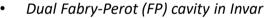
$$\frac{n^2-1}{n^2+2} = \rho(A_R+B_R\rho+\cdots)$$

$$\Delta q = \frac{\Delta\rho V}{\Delta t}$$
Beat frequency variation between the 2 FP cavities
$$\Delta \rho = \frac{2}{3A_R} \underbrace{\Delta f}_{Vgas} - \frac{1}{9A_R} \left(1+4\frac{B_R}{A_R^2}\right) \left(\frac{\Delta f}{v_{gas}}\right)$$
Laser frequency

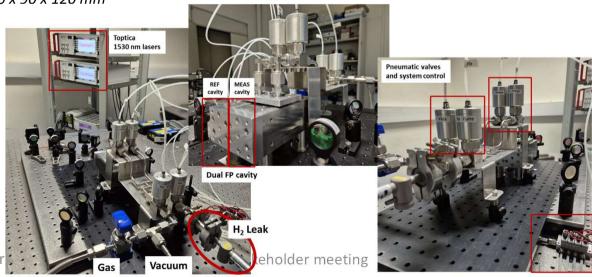




Fabry-Perot refractometry for leak detection at atmospheric pressure (10⁻⁷ to 10⁻⁹ mol/s) [2/4]



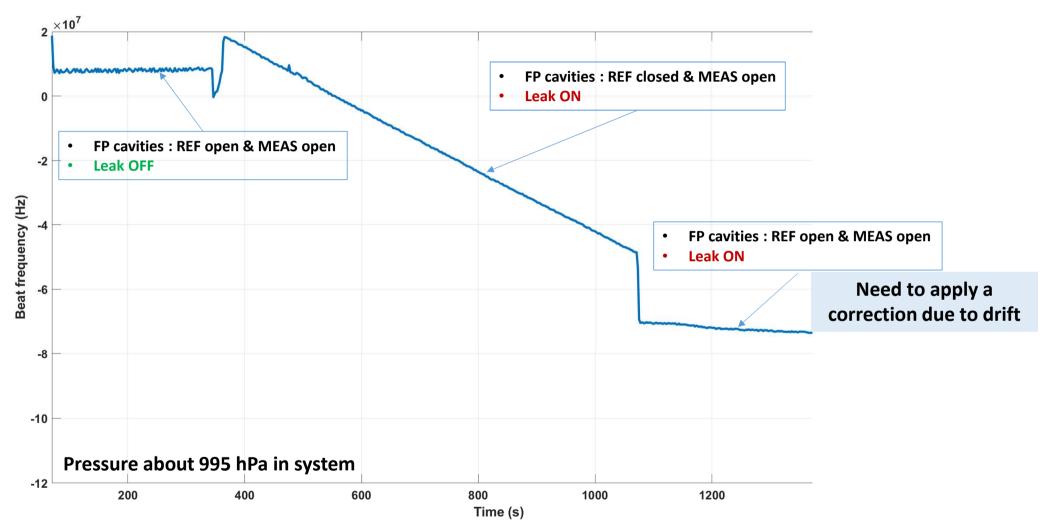
Measurement of variation of density and volume leads to quantity of matter variation over time



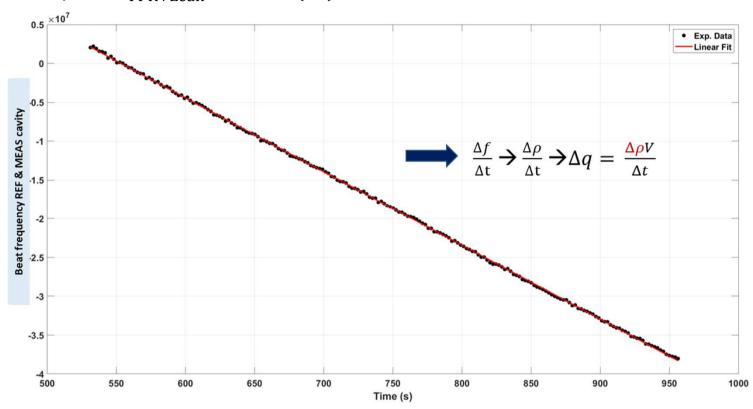
$$\Delta q = \frac{\Delta \rho V}{\Delta t}$$

Toptica 1530 nm wavelength

Size and volume optimization: 50 x 90 x 120 mm



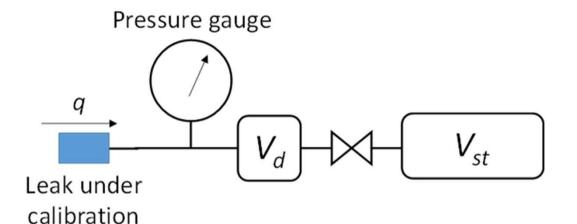
Fabry-Perot refractometry for leak detection at atmospheric pressure (10⁻⁷ to 10⁻⁹ mol/s) [2/4]


21GRD05 - Metrology for the hydrogen supply chain - M36 Stakeholder meeting

Fabry-Perot refractometry for leak detection at atmospheric pressure (10⁻⁷ to 10⁻⁹ mol/s) [2/4]

Volume determination by LNE: $V_{\rm FPR+Leak} = 21.273(50)~{\rm cm}^3~{\rm at}~20~{\rm ^{\circ}C}.$

- First uncertainty budget established
 - Standard deviation of about 1%.
 - Includes mainly the contribution of volume determination, the molar density changes over time (uncertainty of the fitting) and the uncertainties of both coefficients A_R and B_R . 21GRD05 - Metrology for the hydrogen supply chain - M36 Stakeholder meeting



LNE Flow standard: constant-volume flowmeter

Principle: pressure rise rate in a known volume

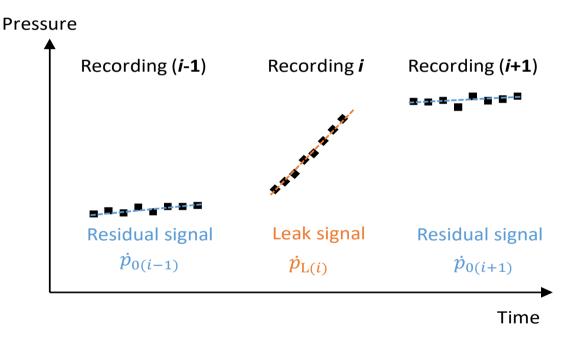
 V_{st} : Standard volume

 V_d : Dead volume

$$V_m = V_{st} + V_d$$

A constant flow rate in V_d then $(V_d + V_{st})$ allows one to determine V_d with pressure rate measurements [1]

→ Requires an optimal flow rate, ie **not too low**


Determination of the gas flow rate in pressure and volume unit [Pa.m³.s⁻¹] $q_{pV} = V_m \frac{dp}{dt}$

$$q_{pV} = V_m \frac{dp}{dt}$$

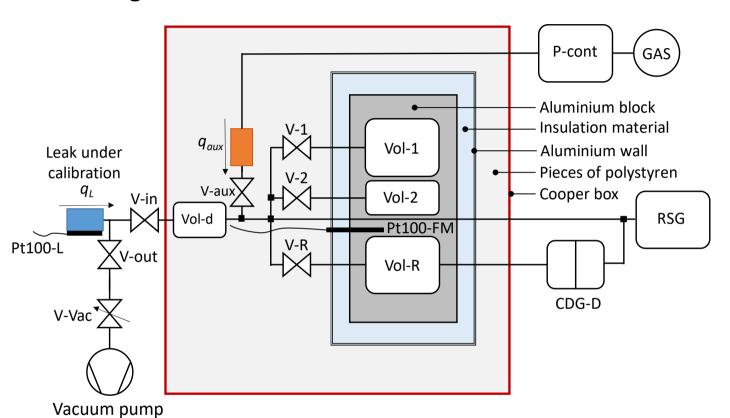
[1] F. Boineau, M. D. Plimmer and E. Mahé, "Volume calibration using a comparison method with a transfer leak flow rate", ACTA IMEKO, vol. 9, no 5, Art. no 5, déc. 2020, doi: 10.21014/acta imeko.v9i5.997.

Procedure of a leak measurement

Alternate of pressure recording with leak isolted from the flowmeter and leak flowing in

→ Requires stability of the residual signal

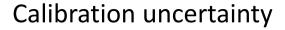
$$q_{pV} = (\dot{p}_L - \dot{p}_0) \cdot V_m$$


 q_{pV} : flow rate in Pa.m³/s V_{m} : measurement volume

Molar flow rate of hydrogen q

$$q = Z_{H2} \frac{q_{pV}}{R \cdot T_{FM}}$$

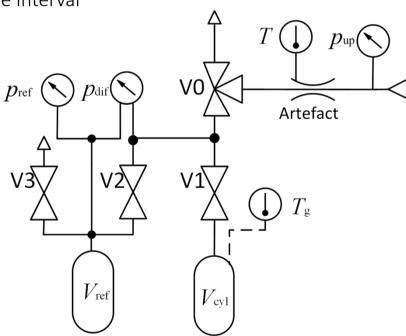
 Z_{H2} : compressibility factor of hydrogen R: molar gas constant T_{FM} : gas temperature in the flowmeter


Design of the LNE constant volume flowmeter

 q_I : Flow rate of the leak under calibration, q_{qui} : flow rate of the auxiliary leak artefact (capillary); **RSG**: Digital barometer; **CDG-D**: Differential capacitance diaphragm gauge of 1 kPa full scale; **P-cont**: Absolute pressure controller, 1000 kPa full scale: **Vol-1**: Standard volume of 1000 cm3: **Vol-2**: Standard volume of 200 cm³ or 30 cm³; **Vol-R**: volume of 150 cm³ connected to the reference port of the differential pressure gauge; **Vol-d**: Dead volume of tubing, gauges, valves, etc.; V-1, V-2, V-R, V-aux: Pneumatic bellow valves; V-in, V-out: Manual bellow valves: V-Vac: Adjustable micro-leak valve; Pt100-L: Pt100 sensor to measure the temperature T_{I} of the leak under calibration; Pt100-FM: Pt100 sensor to measure the temperature T_{FM} of the flowmeter.

Key points:

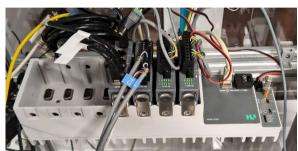
- Optimised flow rate for V_d measurement \rightarrow Auxiliary leak, replaced by a plug of mastered internal volume in the leak measurement phase
- Stability of the residual signal → High thermal inertia of the measurement volume


Lie between **0.16%**•*q* and **1.0%**•*q* in the range 10⁻⁹ mol/s to 10⁻⁶ mol/s

UL Flow standard: PVTt system

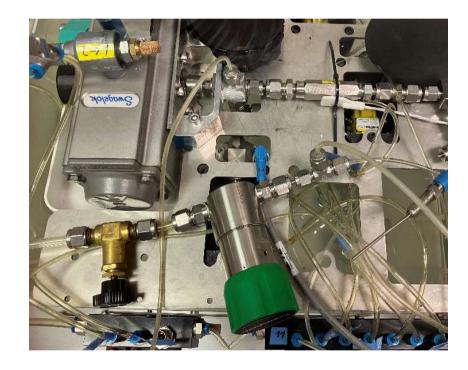
UL, FME - pVTt primary standard

- Volumetric standard with constant volume using a static mass determination and flying start-stop method
 - Constant flow is diverted into measuring volume (V_{cvl}) for a certain time interval
 - Collection of mass flow is predominantly expressed as pressure rise
 - Flow rate range of 7x10⁻⁶ mol/s to 7x10⁻⁸ mol/s of nitrogen/dry air
 - Measurement at atmospheric conditions with max 2.5 kPa pressure rise
 - Collection time between 15 and 900 seconds
 - − Measurement volume of approx. $V_{cvl} \approx 100$ cm³.
 - System is submerged in a water bath → temp. stability


UL, FME - pVTt primary standard

- Operated via a real-time controller equipped with dedicated modules for Pt100, digital inputs and outputs, and digital communication.
- System monitoring & data acquisition performed using LabVIEW
- Gas properties are determined with REFPROP
- N_2 : Expanded uncertainty of 0.2 % (0.25 % below 1.4x10⁻⁷ mol/s)

- Comparison with piston prover standard with expanded uncertainty of $1x10^{-8}$ mol/s in the tested flow range from $7x10^{-6}$ mol/s to $1.8x10^{-6}$ mol/s
- En values below 0.3


21GRD05 - Metrology for the hydrogen supply chain - M36 Stakeholder meeting

UL, FME - pVTt primary standard

Hydrogen leak calibration (L2)

- Leak used as stable flow-rate source
 - Constant inlet pressure: 250 kPa or 500 kPa
 - Outlet connected to diverter
 - Outlet pressure: linear rise up to 2.5 kPa, average value used
- Standard uncertainty contributions:
 - Measuring volume: 0.15 %
 - Leak artefact (outlet pressure variation): 0.04–0.14%
 - Density measurement: ≈ 0.06%
 - Leakage & time: negligible
- Resulting flow-rate standard uncertainty:
 - 0.16-0.21%

Standards comparison

Transfer standards

2 transfer standards were necessary to cover the leak flow range, available from ASC Instruments France

Leak artefact	Technology	Serial number	Applied upstream	Nominal flow rate in
Identification			pressure in kPa	mol·s ⁻¹
L1	Metal capillary	FE210514	700	2×10 ⁻⁸
			300	3×10 ⁻⁹
L2	Sintered metal	FE210515	500	1×10 ⁻⁶
			250	2×10 ⁻⁷

Upstream pressure of H₂

Downstream pressure (Atmosphere)

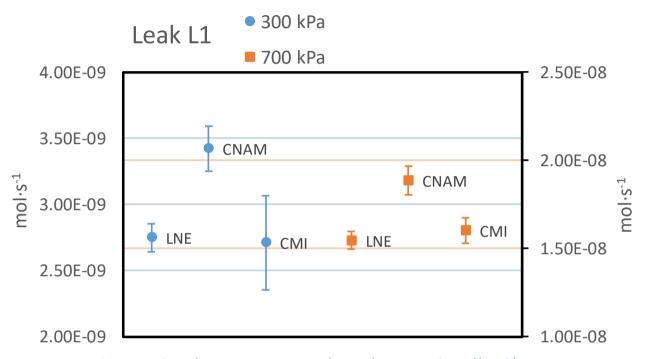
Characteristics of the transfer standards

The leak rate **q** depends on:

- Upstream and downstream pressures
- Temperature

A stability of the standards is expected over the duration of the comparison

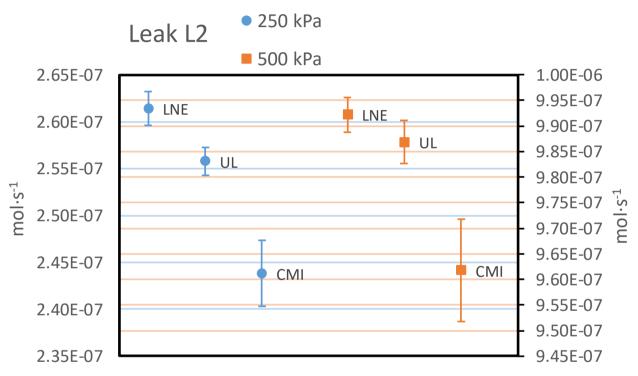
Transfer standard	Temperature coefficient	Uncertainty of stability
L1	(-0.51% ± 0.05%) K ⁻¹	1.3%
L2	(-0.43% ± 0.05%) K ⁻¹	0.068%


General procedure for the comparison

Temperature (T_0): 20 °C with a tolerance of ± 5 °C Downstream pressure (p_{dw0}): 100 kPa with a tolerance of ± 5 kPa Number of measurements per calibration: 3

Notations used									
p_up	Applied upstream pressure and its standard uncertainty $u(p_up)$								
p_dw	Dowmnstream pressure and its standard uncertainty $u(p_dw)$								
T	Measured leak temperature and its standard uncertainty $u(T)$								
q (p_up; p_dw; T)	Measured molar flow rate and is standard uncertainty $u(q)$								
T_room	Room temperature during the calibration								
Laboratory name									
Date									
T_room (°C)									
				Lea	k L1				
p_up nominal	Measurement number	p_up	u (p_up)	p_dw	u (p_dw)	т	u (T)	q (p_up ; p_dw ; T)	u (q)
kPa		kPa	kPa	kPa	kPa	°C	°C	mol·s ⁻¹	mol·s ⁻¹
700	1								
	2								
	3								
300	1								
	2								
	3								

From $q(p_up; p_dw; T)$, the pilot calculates the comparison flow $q_{comp} = q(p_up_0; p_dw_0; T_0)$


Results of the comparison (leak L1)

Uncertainty bars represent enlarged uncertainty (k = 2)

- CMI et LNE have compatible results
- CNAM results show a systematic deviation of around 20% compared with LNE results

Results of the comparison (leak L2)

- UL et LNE have compatible results for 9.9E-7 mol/s
- LNE results show a systematic deviation of around 5.5E-9 mol/s compared with UL results
- CMI results are systematically below those of LNE and UL

Conclusion

- Comparison of small hydrogen flow standards completed successfully
- Good stability of the transfer standards
- Some deviations between participants were stated
 - Measurements of small flow rates are challenging
 - Guidance to improve (eliminate errors) of the standards
 - Possible issues: leaks in the measurement system (LNA, CNAM), knowledge of hydrogen virial coefficients (CNAM), stability of the downstream pressure during a measurement (UL)
 - Possible impurities in inlet of H₂ (CMI)

Contributors

Frédéric Boineau LNE
Primož Žibret UL
Gregor Bobovnik UL
Jože Kutin UL
Zaccaria Silvestri CNAM
Jean-Pierre Wallerand CNAM
Martin Vičar CMI

Workshop Met4H2

Online Karine Arrhenius, Oliver Büker, RISE Shirin Khaki, NPL

Introduction

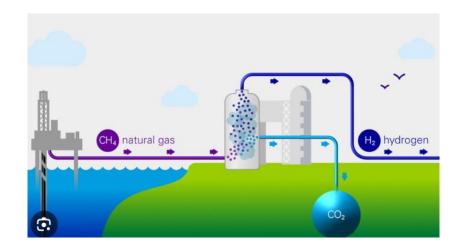
- The competitiveness of the hydrogen supply chain depends directly on its safety and the safety of the facility where hydrogen is used, stored or transported
- Hydrogen has a very broad flammability range (4 to 74% in air) and is prone to leaks due to its small molecular size, less dense than air
- Chemical sensors respond to a particular analyte in a selective and reversible way, and are crucial technology for the safe use of hydrogen

Safety hydrogen sensors

Monitor the level of hydrogen to detect and/or quantify hydrogen leak: can be used to trigger alarms and activate
ventilation or shut down systems to prevent hydrogen to reach flammable levels. Their working range usually
covers at least up to the LEL. Current applications: Room/area monitoring for safety where hydrogen leakage may
occur e.g. battery, detection of leaked hydrogen, process monitoring and control, stationary and mobile fuel cell
applications

Hydrogen purity sensors

- Are used to monitor the quality of hydrogen. Example of application: quality control process to check the compliance with the requirements in the international standards (ISO 14687: 2019 or EN17124:2022) and ISO 19880-8:2024) for hydrogen fuel.
- Sensors need to be able to detect low level of components such as O2, CO, H2S, H2O in pure hydrogen.
- Limited availability: manufacturers mainly propose existing solutions for other matrices (air, N2).
- Must be checked for hydrogen by ensuring that the hydrogen itself will not give rise to a signal before further testing.
- These sensors must be intrinsically safe

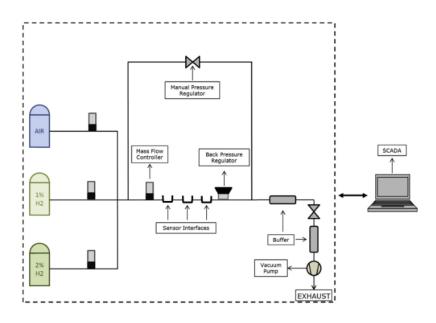


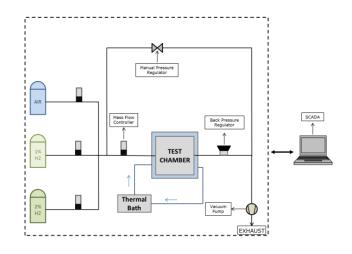
Hydrogen in gas mixtures sensors

- Hydrogen can be injected into the existing natural gas network where it can be transported to the consumers.
- Amount of hydrogen must be controlled so the H2/CH4 mixture satisfies the gas quality requirements of the pipeline set by legislations and standards.
- H2 produced by steam methane reforming reaction: Gas produced contains 2 to 10 vol-% CH4 as residual

What do we do in Met4H2?

- Review of the state-of-the-art including techniques, existing protocols, test rigs, applications
- Development of a protocol to metrologically test sensors
- Development of two rigs to test sensors
 - 1. NPL: rig able to test 1 to 5 sensors for at least one contaminants in H2
 - 2. RISE: rig able to test different types of sensors
- Test of the protocol using both rigs
- Write guideline on validation, calibration and verification of sensors




Protocol

Two common methods to test sensors

Flow-through test

Chamber test

Protocol

Testing of each metric clearly defined in a table

Precision

What to do	Evaluation of results	Pressure conditions	Comments
6-15 replicates for at least 10	Calculate the standard	0.8 to 1.2 bar, kept constant	For sticky" impurities*, the
min during a short timescale	deviation of the replicates	within ±0.1 bar throughout	duration of the test should be
using a single test gas having		the duration of the test	extended (to the time
a volume fraction at the		15°C and 25°C kept constant	needed to obtain a stable
midpoint of the measuring		within ±2 °C throughout the	signal). A reference analytical
range using a flow at the		duration of the test	instrument can be used to
midpoint of the flow interval.		20 % and 80 % within ±10 %	confirm that the sensor is
Calculate the standard		throughout the duration of	exposed to the amount of
deviation		the test.	analyte present in the test
			gas

Protocol

Covers:

Precision

Trueness/accuracy

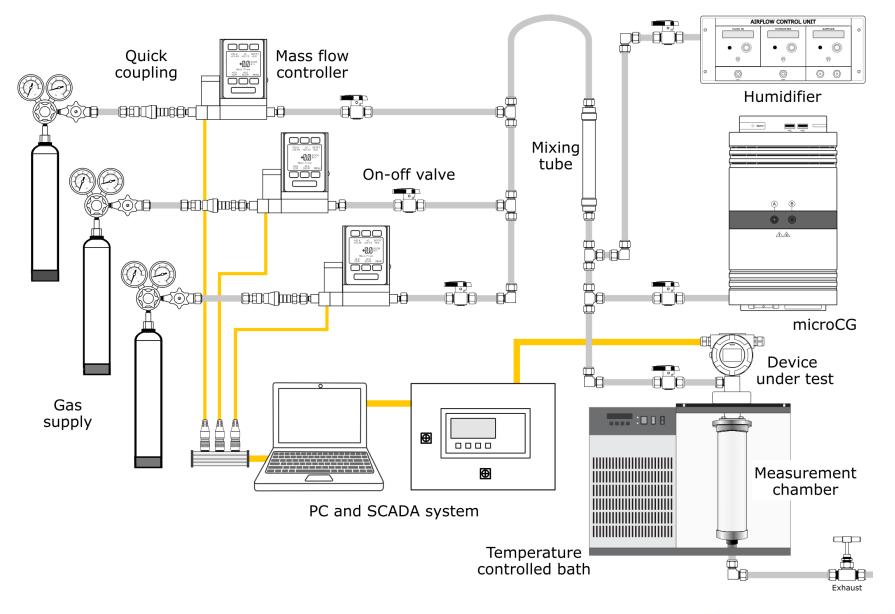
Response time

Stability and drift

Selectivity or cross-interference

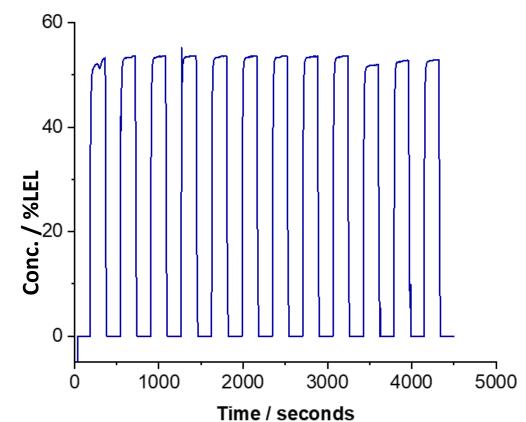
Limit of quantification

Nominal range, saturation


Resolution

Hysteresis

Reversibility



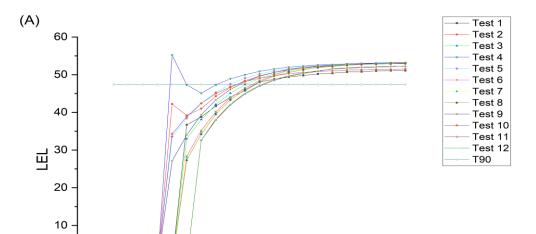
Sensor performance evaluation: precision

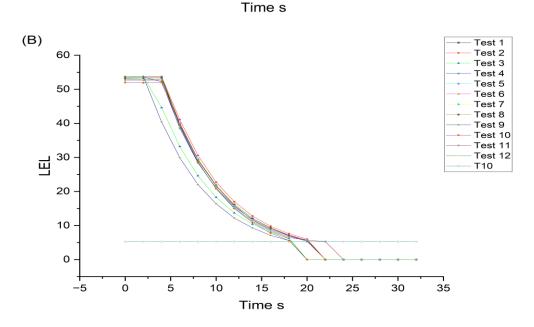
The consistency of repeated measurements and is a measure of the standard deviation of results obtained by carrying replicate measurements. The precision can be expressed as repeatability

Replicates at 2.153 vol-% (around 54%LEL)

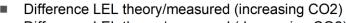
LEL= Lower explosive limit Lowest concentration of a gas that

can ignite and cause explosion if an ignition source is present.

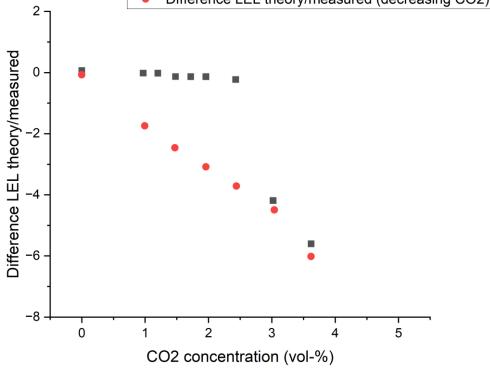


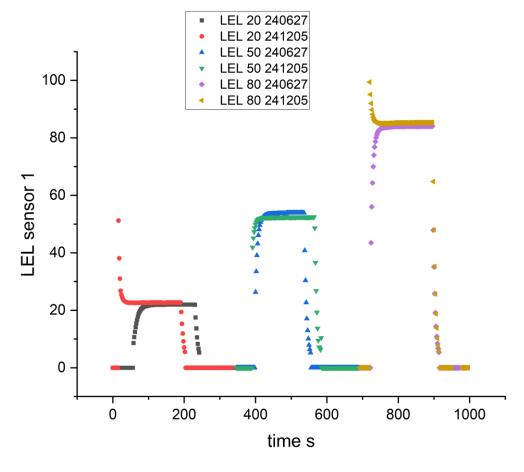

Sensor performance evaluation: Response time

T90 corresponds to the time to reach 90% of the applied target gas concentration or its stable reading. The recovery time T10 is defined as the time to fall to 10% of final value after step removal of measured variable.


Sensor performance evaluation: Cross-sensitivity

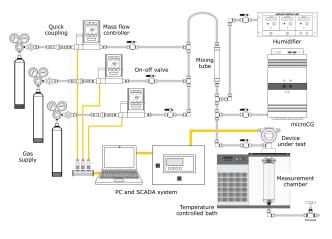
Sensors are designed to be selective to a specific compound or to a certain type of compounds.


In the presence of some nontargeted compounds, a signal may be produced leading to errors in the measurement of the target compound (either higher or lower than predicted).



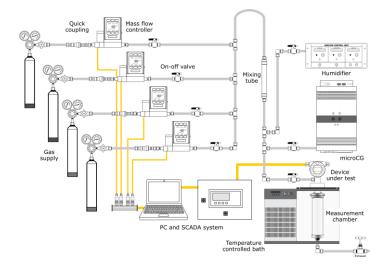
Stability

Drift is a temporal change in the response of an instrument to a constant concentration. Drift implies that the performance of a measuring instrument changes, and re-calibration must be performed.



Extension of the rig

The rig was used in another project to test the capability of selected sensors to detect gases which occur during an early thermal runaway event (battery)

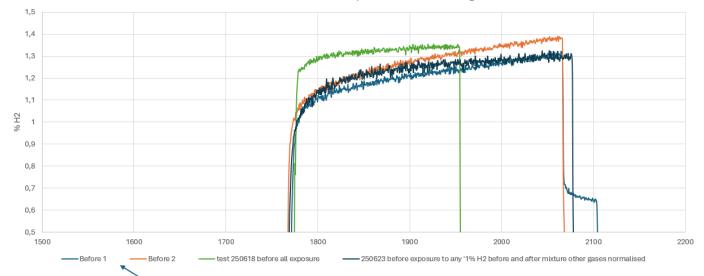

RI. SE

New design

Initial design consisted of 3 gas lines Another gas line has been added for another project

New utilisation of the rig

The rig was used to test a hydrogen sensor which exhibited kinetic problems when left in the air of the lab



Results

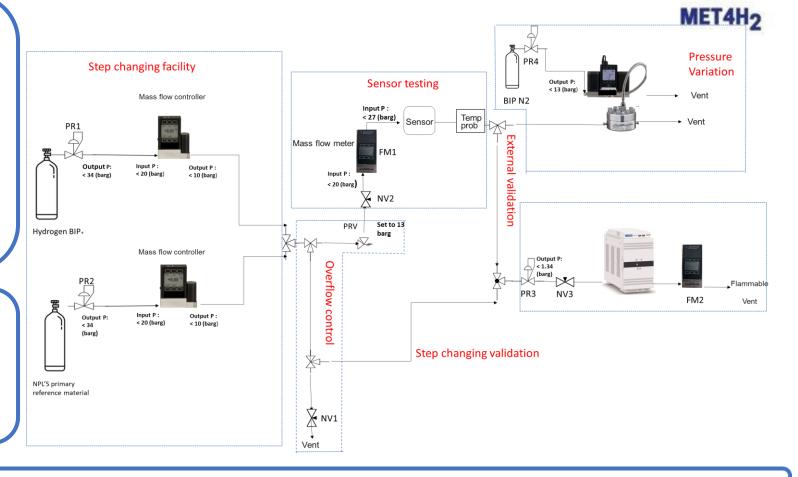
Flow 24/6: 1250 ml/min Flow 23/6: 2000 ml/min Flow 18/6: 1410 ml/min

to be affected just from being standing in the lab

1% H2 in N2 before and after exposure with mixture high SOC

Tests done the 24/6 at the beginning of the day, the sensor was exposed to the gas mixture the 23/6

16-12-2024

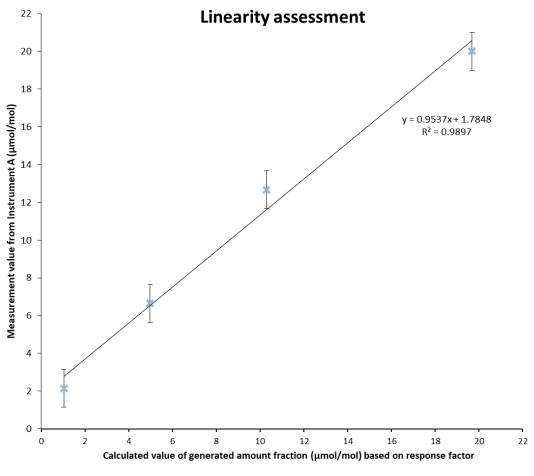


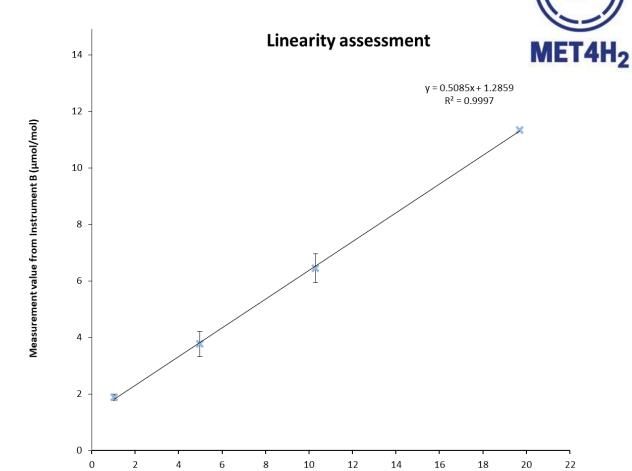
Rig for sensor testing impurities

0

- + Rapid change of amount fraction i.e. from 0.5 to 100 ppm in a few seconds;
- + Rapid change of pressure up to 10 barg (140 psig);
- + Traceability to NPL's PRM;
- + Constant monitoring of the temperature of the gas;
- + Flexible flow rate;
- + Compatible with most contaminants in H₂
- + External validation of amount fraction delivered to sensor via a parallel line to NPL calibrated gas analyser;
- + Validation of amount fraction generated by the step changing facility via a parallel line to NPL calibrated gas analyser;

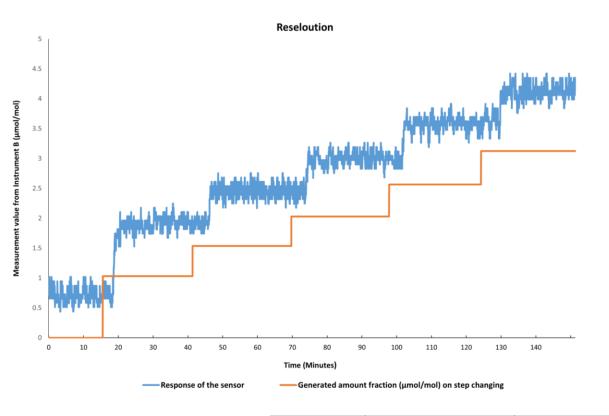
Achievements: compatible with most contaminants in H2 (i.e., O_2 from 0.5 to 20 μ mol/mol); fast response (< 20 seconds)

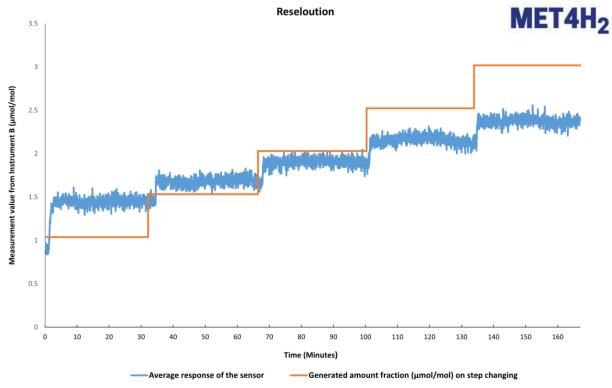




Linearity

XAverage response of the sensor


Calculated value of generated amount fraction (µmol/mol) based on response factor



Resolution

Initial generated amount fraction (μmol/mol) on step changing	Generated amount fraction (μmol/mol) on step changing	Generated step incerment	Change incerment recorded by Sensor A	Change incerment recorded by Sensor B
1.038	1.534	0.496	0.498	0.248
1.534	2.029	0.495	0.610	0.228
2.029	2.524	0.494	0.567	0.257
2.524	3.017	0.493	0.547	0.215

Metrological guidelines for the validation, calibration and verification of hydrogen sensors used within the hydrogen supply chain for quality control

Validation of sensors

Implies demonstrating that a given sensor is able to perform the measurements it is intended to do. Evaluation of the metrics and comparison of the results with end-user's needs

Verification of sensor

Can be defined as the process of ensuring that the data provided by the sensors remains accurate and consistent over time.

Other definitions: checking the performances against specifications provided by the sensor's developer or site verification: check some metrics online

MET4H₂

Guidelines

Adjustment of sensor

Process entails adjusting the response of a sensor to align its output accurately with its input by a recognized reference. This operation can be needed if the sensor's output show a bias or a drift of response with time

Calibration of sensor

Operation performed on a sensor that, under specified conditions

- 1) Established a relation between the values with associated uncertainties provided by measurement standards and corresponding indications with associated uncertainties of the sensor
- 2) Uses this information to establish a relation for obtaining a measurement result from an indication given by the sensor

MET4H₂

Guidelines

Adjustment of sensor

Process entails adjusting the response of a sensor to align its output accurately with its input by a recognized reference. This operation can be needed if the sensor's output show a bias or a drift of response with time

Calibration of sensor

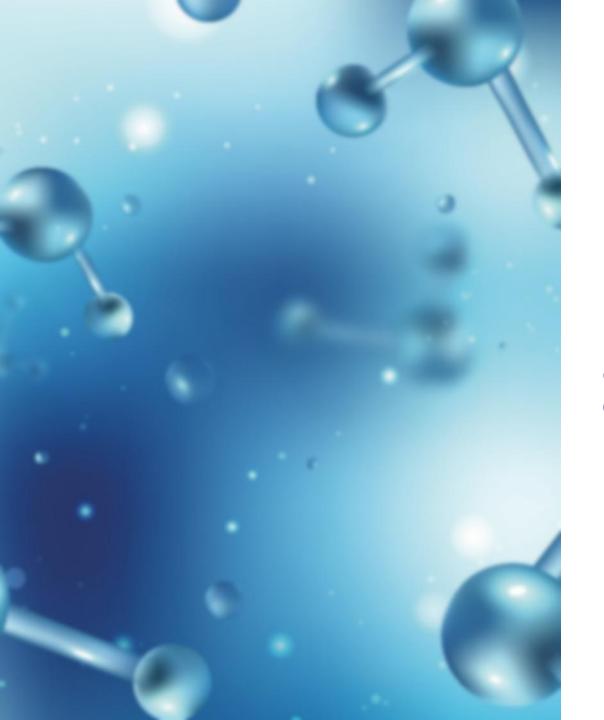
Operation performed on a sensor that, under specified conditions

- 1) Established a relation between the values with associated uncertainties provided by measurement standards and corresponding indications with associated uncertainties of the sensor
- 2) Uses this information to establish a relation for obtaining a measurement result from an indication given by the sensor

MET4H₂

For more information

- A1.3.1 Review state-of-the art sensors
- A1.3.2 Protocol to test sensors
- A1.3.3 rig developments
- A1.3.4 Test of the rig/protocol (several reports)
- A1.3.5 Metrological guidelines for the validation, calibration and verification of hydrogen sensors used within the hydrogen supply chain for quality control (deliverable 2) contains an updated version of the protocol



PERFORMANCE OF FLOW METERS AND CALIBRATION FACILITIES FOR BLENDS OF H2 AND NG AND PURE H2 WITH 98% PURITY

M₃6 Stakeholder meeting 18 September 2025 Hamidou SOUMARÉ

TABLE OF CONTENTS

- Introduction (interests, challenges, solutions)
- Aspects that require evaluation & strategies
- Gas meters: technologies & hydrogen impact
- Test benches for H2NG blends
- Experimental results for some meters (THOTH2 project)
- Conclusion & perspectives

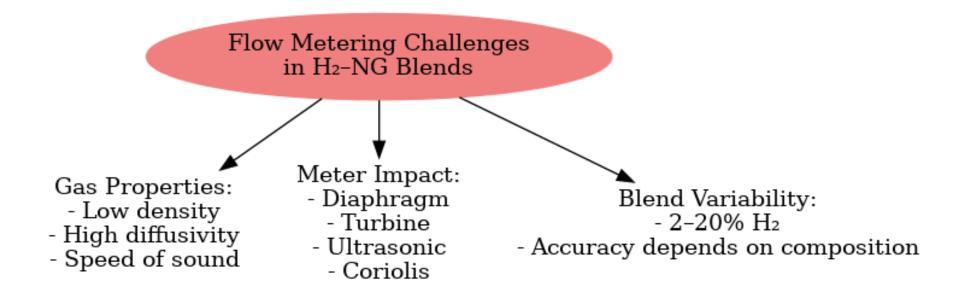
INTRODUCTION

Injecting Hydrogen into the Natural Gas Grid

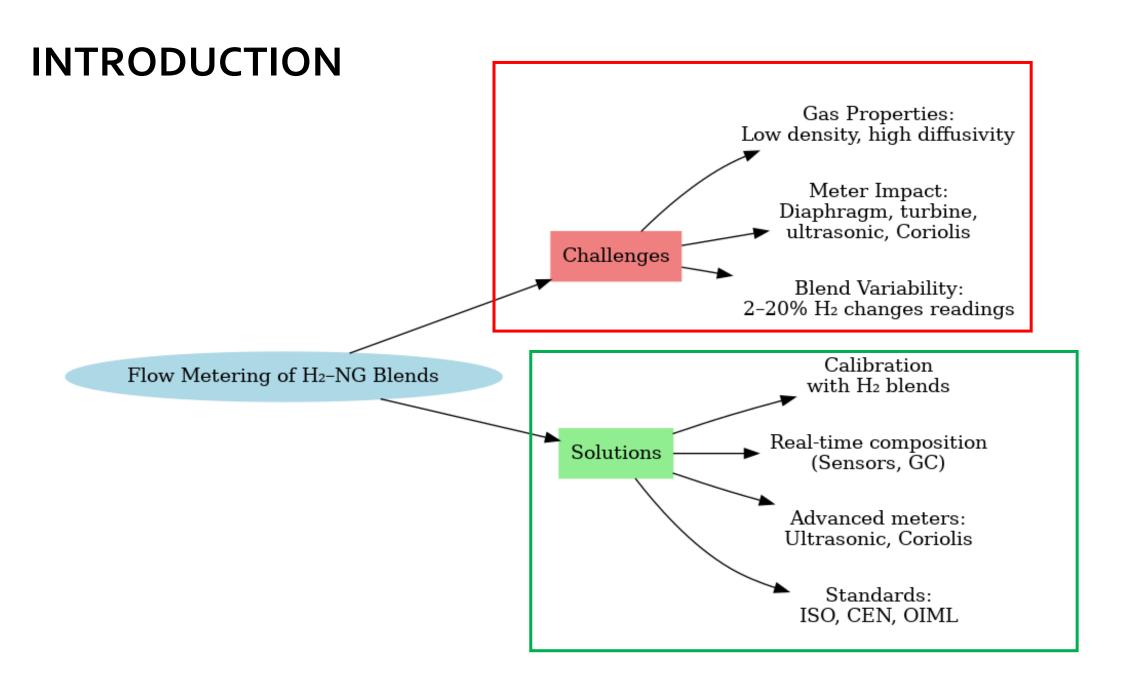
Sector Coupling: Link renewables → gas (Power-to-Gas)

Pipelines, storage, appliances

Energy Storage: Seasonal storage & flexibility


Transition Step: Toward a hydrogen economy

Key Advantages:


Lower CO₂ emissions → cleaner energy
Use existing pipelines & appliances
Store surplus renewable electricity
Seasonal & large-scale energy storage
Improves energy security & independence
Step toward a full hydrogen economy

INTRODUCTION

<u>Main Challenges</u>: Hydrogen's unique gas properties, impact on traditional meters, and variability of blend composition affect measurement accuracy.

TABLE OF CONTENTS

- Introduction (interests, challenges, solutions)
- Aspects that require evaluation & strategies
- Gas meters: technologies & hydrogen impact
- Test benches for H2NG blends
- Experimental results for some meters (THOTH2 project)
- Conclusion & perspectives

ASPECTS THAT REQUIRE EVALUATION & STRATEGIES

Operational

- Metering accuracy may degrade (low density, high speed of sound).
- Pressure variations require tight control.
- Continuous gas-quality checks.
- Facility limits: materials, blending ratios, metering specs, storage, combustion.
- Maintain grid flexibility without losing safety/reliability.

Safety

- Metal embrittlement of pipelines/compressors/storage.
- Leaks at joints/seals → explosion & fire hazards.
- Combustion differences (Wobbe, flame) may require system changes; CO risk.
- Strengthen fire detection/suppression/management.
- Environmental impacts from leaks or non-RES H₂.
- Ensure compatible electrical equipment (e.g., ATEX).

Economic

- Infrastructure upgrades to handle hydrogen.
- End-user switching costs for appliances/systems.
- Variable H_2 production costs \rightarrow price instability.
- \bullet H₂–NG separation can be complex and energy-intensive.

TABLE OF CONTENTS

- Introduction (interests, challenges, solutions)
- Aspects that require evaluation & strategies
- Gas meters: technologies & hydrogen impact
- Test benches for H2NG blends
- Experimental results for some meters (THOTH2 project)
- Conclusion & perspectives

GAS METERS: TECHNOLOGIES & HYDROGEN IMPACT

Turbine gas meters: principle and design

- Principle: a bladed rotor turns with the gas flow; pulses are counted to indicate volume.
- Performance improves with higher gas velocity and/or pressure (greater driving force).
- Non-idealities reduce linearity: blade/hub/tip drag and bearing friction.
- Use case: preferred for medium to high flow-rate applications.
- Construction by nominal pressure (PN):
 - > Body: ductile iron or steel; hard-anodized aluminium for low PN (≤PN16).
 - > Rotor: typically, aluminium (>DN150), polyacetal/Delrin, or less often stainless steel.
 - > Shaft & bearings: stainless steel (lubricated).
- Flow conditioning: upstream flow straightener minimizes swirl/asymmetry.
- Rotor specifics: usually 16/20/24 blades at ~30° or 45° inclination.

☐ <u>Turbine gas meters:</u> H₂ impacts

Measurement

- Negligible impact up to ~10% vol H₂ in NG.
- At 16–32 barg, blends up to ~30% behave ~like NG (Reynolds).
- Higher $H_2 \rightarrow$ lower density \rightarrow narrower turndown; effects near Qmin.
- Higher volumetric flow → overload risk.

Operations & Maintenance

- Overload: no specified limit on indication error ⇒ no firm accuracy claim in overload.
- Installation broadly unaffected; ensure adequate upstream flow conditioning.
- Design life ≈25 years; recalibration ≥5 years; lubrication, inspections, spin tests.
- Check lubricant compatibility with H₂/NG blends with manufacturer.

Certification

- Manufacturers claim process capability ~25–100% H₂ (model-specific).
- Custody transfer requires EU Type Examination Certificate for declared H₂ content.
- Some meters already certified for ~30% vol H₂ in NG.

Rotary piston gas meters: principle and design

- Use case: preferred for low–medium flow rates in transmission & distribution.
- Measuring principle: two counter-rotating figure-8 rotors (impellers) trap & displace fixed volumes;
 - > Pressure differential across inlet/outlet drives the rotors; synchronization via external gears.
 - Four equal volumes are moved per full rotation (four-phase cycle).
- Variants: 'Twin' design (two rotor pairs shifted 45°) supports higher flow rates.
- Typical ranges: cyclic volume ≈ 0.25–>5 dm³; rotor speed ≈ 700–5700 rpm.
- Construction: body in aluminium or cast/ductile iron (PN25/PN40); steel for high pressure (up to PN100);
 - > Cartridge/rotors usually aluminium; bearings & shafts typically stainless steel; Delrin/synthetics also used.
- Clearances between rotors and body prevent excessive ΔP & wear; rotors do not contact each other.
- Measurement nuance: slip/leakage through clearances causes a small discrepancy from ideal displacement;
 - Leakage magnitude depends on gas viscosity.

☐ Rotary piston gas meters: H₂ impacts

Measurement

- Validated up to $\sim 20\%$ vol H₂ in NG: errors within MPE; slight negative bias (NewGasMet).
- Long-term tests at 20% vol H₂: no operational degradation observed.
- Higher H_2 lowers gas density \rightarrow may reduce turndown; effects most visible near Qmin.

Materials & Leakage

- Uncertain behaviour at higher H₂: aluminium alloys not well characterized; ductile cast iron shows ductility loss.
- No public H_2 -leakage studies; lower viscosity of H_2 (~8.8 vs ~10.9 μ Pa·s at 20°C) suggests higher leakage \rightarrow reduced rangeability at Qmin.
- Overload effects in the long term remain inconclusive.

Operations & Manufacturer Claims

- Installation largely unchanged; design life ≈ 25 years.
- Maintenance: lubricate rotor & timing gears; check oil \sim 6-monthly; oil change \sim 5-8 years; confirm lubricant compatibility with H₂/NG.
- Manufacturers: many allow $\sim 30\%$ vol H₂; several claim 100% H₂ (process use).
- Ensure ATEX compliance for H₂/H₂NG service on installed meters.

☐ <u>Ultrasonic gas meters</u>: principle and design

- Deployed in both distribution and transmission networks (suited to high flow rates).
- Two measurement methods:
 - > Transit time: compute flow from the difference in upstream vs. downstream pulse transit times.
 - ightharpoonup With no flow, $\Delta t = 0$ (transit time $\propto 1/\text{speed of sound}$).
 - \triangleright With flow, co-flow pulse accelerates and counter-flow pulse decelerates; larger \triangle t at higher velocity.
 - > Doppler: infer flow from frequency shift of ultrasonic waves scattered by moving gas molecules.
- Form factors:
 - Inline (wetted sensors) body in carbon steel or 316 stainless steel; handles very high pressures (up to PN 420) and large sizes (DN up to 1600).
 - Clamp-on (external sensors on pipe wall).
- Transducers: piezoelectric ceramic disks operating ~100–300 kHz; typically >200 kHz to mitigate noise.

☐ <u>Ultrasonic gas meters:</u> H₂ impacts

Measurement & Performance

- 5% vol H₂ \rightarrow ~+12.3% speed of sound; may exceed ISO 14236 threshold (475 m/s) for domestic meters.
- Experimental tests: high measurement accuracy maintained up to ~10% vol H₂.
- Transmission devices: survey indicates suitability at least up to ~30% vol H₂; one model tested to 100% H₂.

Materials & Design

- Inline (wetted) bodies often carbon steel/316 SS: H₂ can reduce ductility, fracture toughness and accelerate fatigue crack growth; long-term behaviour still uncertain.
- Clamp-on sensors (non-wetted): material issues not expected as sensors do not contact the gas.

Deployment & Compliance

- Installation: broadly similar to turbine/rotary; simulations show H₂% and distance from mixing point can matter.
- Maintenance: annual checks (transducer-tube coupling, wall corrosion, transducer status); need for extra frequency not yet established.
- Clamp-on: suitable for process use but not EU type-approved \rightarrow not for custody transfer.
- Domestic ultrasonic: manufacturers confirm suitability up to ~20% vol H₂; ATEX compliance is the main limiting factor.

☐ <u>Diaphragm gas meters</u>: principle and design

- Deployment: common in NG distribution; limited to low-flow process use in transmission.
- Measuring principle: two deformable-wall chambers isolate known gas volumes;
 - ➤ Each chamber ≈ one-quarter of the cyclic volume; measurement = count of fill/empty cycles.
- Construction: body (pressurized gas), diaphragms, valve covers/seats, linkage to valves/index, index drums.
- Materials: historic leather/animal skin → modern fabric (cotton/nylon) vulcanized with rubbers (nitrile, neoprene, Viton, etc.).
- Evolution: reduced weight, greater compactness, lower cost, improved accuracy and stability.

☐ <u>Diaphragm gas meters</u>: H₂ impacts

Measurement & Accuracy

- Generally considered composition-insensitive; literature shows no effect up to ~10% vol H₂ in NG.
- At ~20% vol H₂: mixed findings GHRYD saw -1% to +2.5% error; other studies reported only ~0.3–0.8% change below 0.1 Qmax.
- Up to \sim 40% vol H₂: deviations <1%; temperature-compensation had stronger influence than gas composition.
- Durability checks up to $\sim 17\%$ vol H₂ across 0.013–5 m³/h: very small differences; no extra capacity required.

Materials, Leakage & Permeation

- Safety focus: leakage/permeation risk depends on membranes and wetted parts material-specific by model.
- H₂ permeation through elastomers remains incompletely characterized; more testing needed.

Operations, Overload & Manufacturers

- No change indicated to installation/ordinary maintenance rules; short-term overload is possible.
- Higher H₂ may increase noise and cycle frequency; long-term wear needs experimental verification (may motivate larger meters).
- Model-dependent impact: two makers claim pure H₂ capability; only one supported by tests to 100% H₂ (the other to ~30% H₂).

☐ Thermal mass gas meters: principle and design

Overview:

- > Proven in distribution & transmission grids
- Stable operation (>10 years)
- ➤ Measure mass flow via cooling effect on heated element

Principle:

- ▶ PT100 RTD → measures gas temperature
- ➤ Platinum heater → heated element
- \triangleright Flow \propto power to maintain \triangle T or temperature difference

Operating Modes:

- \triangleright CCA: Constant $\triangle T$, flow \propto current (most common)
- \triangleright CTA: Constant current, flow $\propto \Delta T$ variation

• Design:

- ➤ Configurations: Inline | Insertion | Capillary (low-flow)
- ➤ Materials: Aluminium enclosure, SS/Hastelloy wetted parts, PT100 + Platinum heater

☐ Thermal mass gas meters: H₂ impacts

Gas Composition Effects:

- > Accuracy depends on viscosity, density, specific heat
- ➤ Capillary type: correction factors possible (EN group H, low CO₂/N₂)
- Accuracy deteriorates if composition changes without compensation

Hydrogen Mixtures:

- Successfully used with ≤10% H₂
- ➤ Early meters less reliable above 2% H₂
- ➤ Accuracy worsens beyond 10% H₂ (per tests)
- > No uniform conclusion in literature

Material Compatibility:

- ➤ C-22 Hastelloy: high H₂ permeability, tensile impact risk
- \triangleright C-276 Hastelloy: susceptible to H₂ embrittlement
- ➤ Limited evidence on maintenance / battery life impact

Industrial vs. Domestic Meters:

- ➤ Industrial: most claim up to 100% H₂, only one EU-approved model
- ➤ Domestic: approved up to 2% H₂; poor accuracy at 23% H₂
- Dedicated models exist for 23% H₂ and >98% H₂

Coriolis gas meters: principle and design

Overview:

- Used for custody transfer since 1995
- > Proven reliable for NG mass flow measurement

Working Principle:

- Based on Coriolis force
- > Tubes vibrate at resonant frequency
- > Flow induces phase shift in tube oscillations
- > Sensors detect asymmetry proportional to flow rate

• Design:

- > Two main components:
 - Sensor (primary element)
 - Transmitter (secondary element)
- > Configurations: single tube, dual tube, etc.
- > Designs aim to minimize external disturbances

☐ Coriolis mass gas meters: H₂ impacts

• Performance:

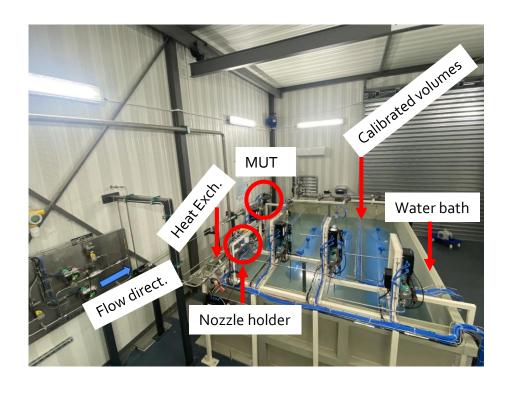
- ➤ Tested for H₂ refuelling (high pressure)
- Safe use with ≤10% H₂NG (literature)
- \triangleright Reliable up to 30% H₂ at 16–32 bara (with compensation)
- ➤ Manufacturers confirm suitability for up to 100% H₂
- Works well due to density-based detection (vibration frequency)
- ➤ Limitation: small meters → low sensitivity in low-mass, high-volume flows

Material Considerations:

- > Critical: components in direct contact with H₂ (sensors, measuring devices)
- Common alloys: 304L, 316/316L, 904L, Hastelloy C22
- ightharpoonup 316/316L SS: modest ductility loss, strength increase \rightarrow suitable
- ➤ High-Ni austenitic steels (>7% Ni): suitable for H₂
- > 304 SS: high susceptibility to H₂ embrittlement & cracking
- > 904L: limited data, no major yield strength change

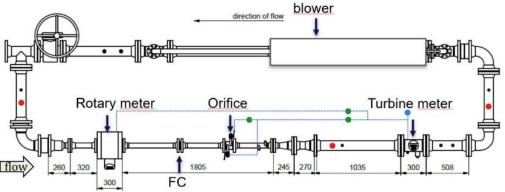
Other Aspects:

- ➤ Careful material selection & leak prevention essential
- ➤ No clear evidence on installation & maintenance impact


TABLE OF CONTENTS

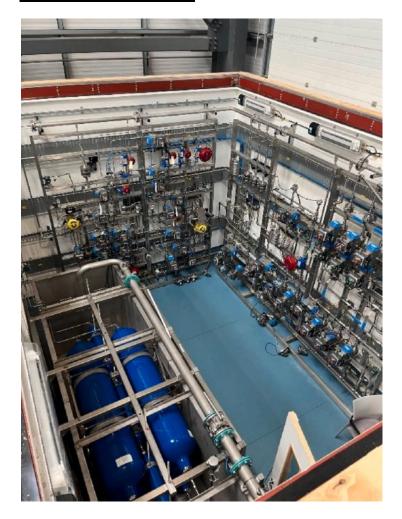
- Introduction (interests, challenges, solutions)
- Aspects that require evaluation & strategies
- Gas meters: technologies & hydrogen impact
- Test benches for H2NG blends and/or pure H2
- Experimental results for some meters (THOTH2 project)
- Conclusion & perspectives

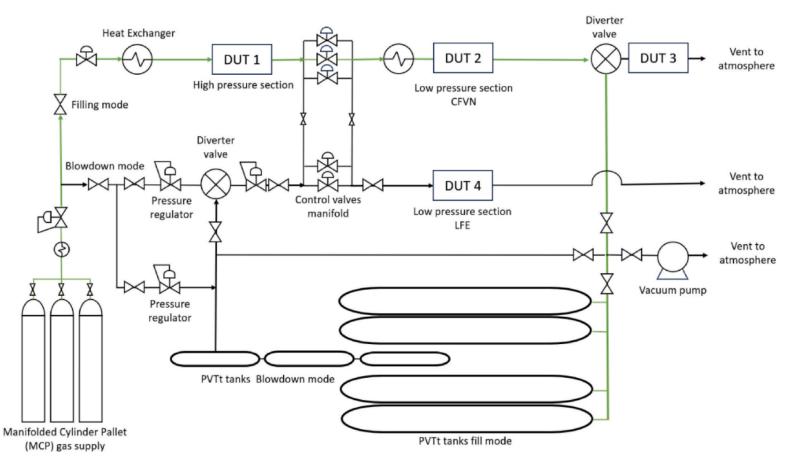
CESAME's PVTt bench


SPECIFICATIONS:

- Based on PVTt method.
- Near 100% and H2NG blends up to 20% H2 (to date).
- Up to 20 kg/h and an upstream max pressure up to 80 bar.
- Uses H2 or CH4 or H2CH4 blends as flow sources.
- Uses calibrated volumes (LNE) and sonic nozzles as references.
- The targeted facility uncertainty is about $\pm 0.3\%$ (k = 2).

DNV test bench


SPECIFICATIONS:

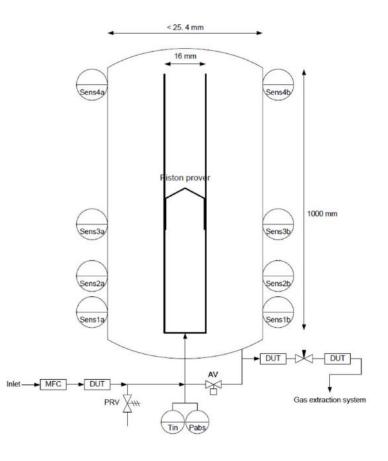

- Near 100% and H2NG blends up to 30% H2.
- Closed loop driven by a blower.
- Uses a turbine meter as a reference meter, calibrated on multiple gases and at multiple pressures at traceable labs.
- The resulting facility uncertainty is estimated between ± 0.3 % and ± 0.5 % (k = 2).

Test Fluids:	Nitrogen, hydrogen, methane, carbon dioxide					
Flow Range: Test Section:	5 m ³ /h to 500 m ³ /h 1-inch to 6-inch					
Operating Pressure:	0 bar(g) to 40 bar(g)					
Temperature Range: Reference system:	Ambient (20 °C) Turbine meter (PTB model corrected)					
Claimed reference uncertainty:	± 0.3 to ± 0.5 % (k = 2)					

NEL test bench

NEL test bench: specifications

Test Fluids:	Nitrogen, hydrogen, methane, carbon dioxide				
Flow Range:	0.006 Sm ³ /h to 100 Sm ³ /h				
Test Sections Nominal Size:	1", 0.5"				
Operating Pressure at DUT 1:	0 bar(g) to 120 bar(g)				
Operating Pressure at DUT 2 and DUT 3:	0 bar(g) to 30 bar(g)				
Operating Pressure at DUT 4:	0 bar(g) to 2 bar(g)				
System Design Pressure:	PN200 (valves and piping only – instrumentation only suitable for operating pressure as to obtain the best uncertainty)				
Temperature Range:	Ambient				
Fill Mode Collection Volume:	$4 \times 200 \text{ L}$ collection tanks				
Blowdown Collection Volume:	3×11 L collection tanks				
Uncertainty:	± 0.1 % (k = 2).				


- N2, H2, CH4, CO2
- Uncertainty around ±0.1 % (k=2).
- Used for calibration of secondary flow standards, such as: CFVN, LFEs
 or any meters irrespective of their technologies.
- Calibrate secondary reference standards up to 30 bar(g) and other devices using the SRS up to 120 bar (g).
- Flow range: 0.006 Sm₃/h to 100 Sm₃/h.

MET4H₂

• VSL's test facility

- ✓ Mercury-seal piston prover.
- ✓ Low flow.
- ✓ 3 different discrete volumes
- ✓ Volumes determined traceably to SI.

Test Fluids:	Nitrogen, air, methane, hydrogen, carbon dioxide, other gases					
Flow Range:	0.006 Sm ³ /h to 0.6 Sm ³ /h					
Operating Pressure Upstream DUT position:	0 bar(g) to 9 bar(g)					
Operating Pressure Downstream DUT positions:	0 bar(g) to 9 bar(g)					
System Design Pressure:	10 barg					
Temperature Range:	Ambient (20 °C)					
Uncertainty:	± 0.22 % (k = 2)					

MET4H₂

GAZ SYSTEM test bench

Operation mode	Closed loop				
0	0.0000				
Static pressure range	(8 ÷ 54) barg				
Volumetric flow range	(8 ÷ 6000) m ³ /h				
Gas temperature range	(16 ÷ 24) °C				
Nominal diameter of the tubing	Nominal: DN50, DN80, DN100, DN150, DN200, DN250 i DN300; Optional: DN350 i DN400				
Accredited uncertainty (k=2)	Calibration of turbine meters: CMC = 0,22% for flow rates (1600 ÷ 4000) m³/h CMC = 0,28% for flow rates (8 ÷ 1600) m³/h Calibration of ultrasonic meters: CMC = 0,22% for flow rates (1600 ÷ 6000) m³/h CMC = 0,29% for flow rates (13 ÷ 1600) m³/h				

LWG Operating Modes

- Closed-loop mode
 - Used when flow ≤ 6,000 m³/h and pressure drop < 1 bar
 - Requires ~400 kW to power the blower
 - Ensures stable calibration conditions → better repeatability
- > In-line mode
 - Used when flow/pressure drop exceeds closed-loop limits
 - Flow generated by **compressor station downstream**

TABLE OF CONTENTS

- Introduction (interests, challenges, solutions)
- Aspects that require evaluation & strategies
- Gas meters: technologies & hydrogen impact
- Test benches for H2NG blends and/or pure H2
- Experimental results for some meters (THOTH2 project)
- Conclusion & perspectives

❖THOTH2 Project

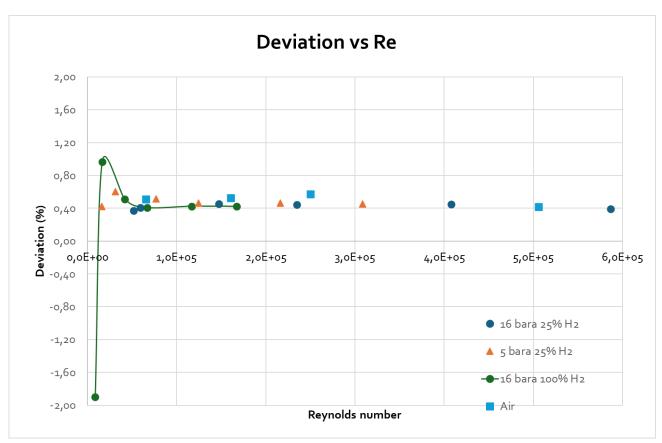
✓ Focus: Accurate measurement of H_2NG mixtures (up to 100% H_2).

✓ Goals:

- Define standards for measuring device performance at different H₂ blends.
- Verify safety and durability of devices.
- Recommend solutions to overcome barriers.

✓ Key Players:

- **SNAM** coordinates integration of 14 partners.
- Industry experts: Natran, GAZ-SYSTEM, Enagás, INRETE.
- Metrology: CESAME, INRIM, METAS.
- R&D & technology: UNIBO, INIG, FBK, ENEA, CSIRO.
- Communication: GERG (visibility, EU projects).


✓ Impact:

- Accelerates transition to the H₂ economy.
- Contributes to REPowerEU and NextGenerationEU.
- Establishes an R&D Hub to:
 - Develop/update international standards.
 - Foster innovation in H₂NG measurement.
 - Support the H₂ value chain using EU gas infrastructure.

Elster SMRI – G160 (TURB METER)

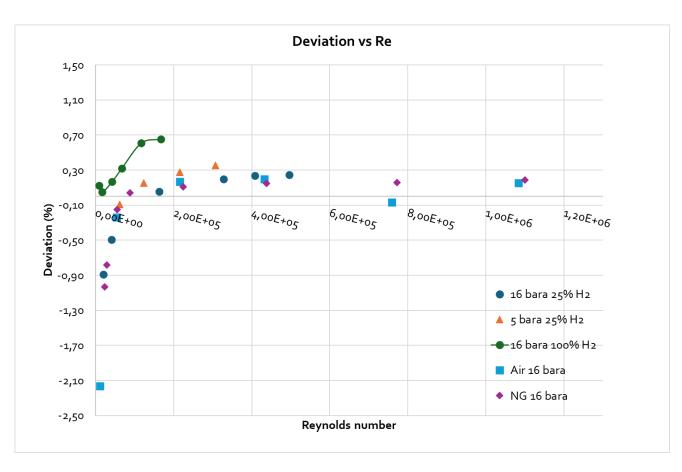
❖ 16 bara – 25% H₂

- Deviation is very stable around +o.3 to +o.5%.
- Minimal variation, even at high Reynolds numbers.
- Most regular curve → best precision and stability.

♦ 5 bara – 25% H₂

- Very similar to the 16 bara 25% H2 one.
- Slightly more oscillations at low Reynolds.
- Lower pressure does not significantly affect accuracy.

❖ 16 bara – 100% H₂


- Highly unstable at low Reynolds: deviation strongly negative (≈ -2%) then a sharp positive peak (≈ +1%).
- Stabilizes around +0.4% at medium/high flow.
- Shows that **pure hydrogen is difficult to measure at low flow**, but accuracy improves at higher flow.

Air

- Starts near +o.5% deviation.
- Gradually decreases with increasing Reynolds.
- Drops below zero at high flow (≈ -0.09% at ~1.2×10⁶).
- Clear tendency to underestimate flow at high rates.

DELTA S₃ – G₂₅₀ (ROT MET)

◆ 16 bara – 25% H₂

- Deviation remains close to o% to +o.3% after low Reynolds.
- Some small oscillations at the beginning but stabilizes well.
- Stable and reliable behavior across the flow range.

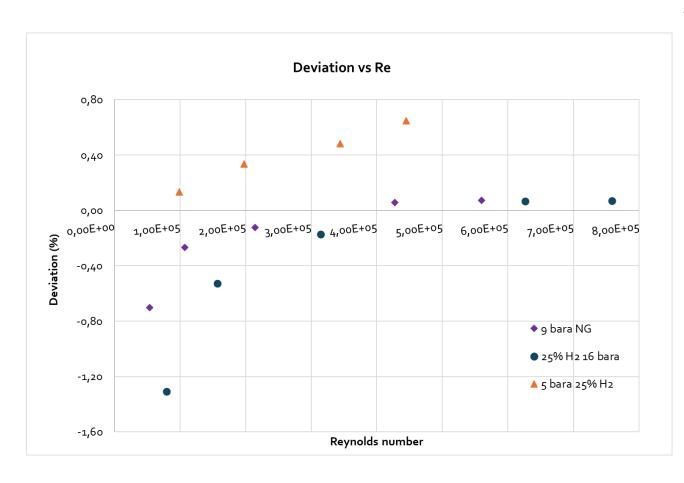
❖ 5 bara – 25% H₂

- Slightly higher deviation than the blue curve (+o.2 to +o.3%).
- Shows similar stability at higher Reynolds.
- Lower pressure does not significantly degrade accuracy.

❖ 16 bara – 100% H₂

- At low Reynolds: starts around **-0.1%**, rises quickly to about **+0.7%**.
- Stabilizes at medium Reynolds with deviation ~+o.6-o.7%.
- Higher deviations than H₂ blends, especially at low flow.

❖ Air – 16 bara


- Large negative deviation at very low Reynolds (≈ -2%).
- Improves with flow, approaching -0.1% to -0.2%.
- Tends to underestimate flow, especially at low Reynolds.

❖ Natural Gas (NG) – 16 bara

- Starts slightly negative (~-o.9%) at low Reynolds.
- Increases gradually, stabilizing near +0.2% at higher Re.
- Shows better alignment at higher flows compared to air.

KROHNE– DN100 (USM)

❖ 16 bara – 25% H₂

- Starts with a significant negative deviation (≈ -1.2%) at low Reynolds.
- Improves gradually, approaching zero deviation as Reynolds increases.
- At higher Reynolds (>6×10⁵), deviation stabilizes close to 0%.
- Behavior: underestimates at low flow, accurate at higher flow.

❖ 5 bara – 25% H₂

- Always positive deviation, starting around +0.2%.
- Deviation increases with Reynolds, reaching up to +0.7% at $\sim 5 \times 10^5$.
- Behavior: systematic overestimation, more pronounced at higher flow.

❖ Natural Gas (NG) – 9 bara

- Begins slightly negative (≈ –0.6%).
- Increases steadily with Reynolds, moving towards o%.
- At high Reynolds (~5×10⁵–8×10⁵), deviation becomes slightly positive (≈ +0.1–0.2%).
- Behavior: better than H₂ at low flow, slightly overestimates at high flow.

TABLE OF CONTENTS

- Introduction (interests, challenges, solutions)
- Aspects that require evaluation & strategies
- Gas meters: technologies & hydrogen impact
- Test benches for H2NG blends and/or pure H2
- Experimental results for some meters (THOTH2 project)
- Conclusion & perspectives

CONCLUSION & PERSPECTIVES

Conclusions

- Hydrogen blending into NG grids is technically feasible but introduces significant metering challenges.
- Performance strongly depends on gas properties (density, diffusivity, speed of sound) and meter type.
- Experiments show reliable measurement for blends up to 10-30% H₂; pure H₂ requires further development.
- European test benches and calibration facilities provide robust validation environments.

Perspectives

- Establish and update international standards (ISO, CEN, OIML) for H₂NG measurement.
- Drive innovation in meter technologies (ultrasonic, Coriolis, thermal mass) for high H₂ concentrations.
- Deploy real-time gas composition monitoring to improve accuracy and safety.
- Address long-term material compatibility and durability under hydrogen service.
- Contribute to **EU decarbonisation goals** (REPowerEU, NextGenerationEU) and accelerate the **hydrogen economy**.

Thank you for your attention!

Hamidou SOUMARÉ

Contact: <u>h.soumare@cesame-exadebit.fr</u>

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EURAMET. Neither the European Union nor the granting authority can be held responsible for them.

The project has received funding from the European Partnership on Metrology, co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.

EUROPEAN PARTNERSHIP

TRACEABILITY CHAINS FOR HYDROGEN FLOW METERING WITH FLOW RATES ABOVE 0.2 KG/MIN AND THREE OPTIONS FOR ENSURING TRACEABILITY FROM ESTABLISHED PRIMARY STANDARDS FOR THE 2030 EUROPEAN INDUSTRY AND HYDROGEN COMMUNITY

M₃6 Stakeholder Workshop 18 September 2025, Virtual venue Marc de Huu, METAS

TABLE OF CONTENTS

- Overview (2 min)
- Traceability needs based on stakeholder needs (5 min)
- Presentation of traceability chain (15 min)
- Summary (1-2 min)

OVERVIEW



- Hydrogen to play a role in the decarbonisation of gas networks
- New metrological techniques and testing infrastructures are required to support the use of hydrogen
- Flow measurement is required for:
 - Process monitoring and control
 - Fiscal metering
 - Billing and custody transfer
- Lack of traceable calibration facilities to perform R&D and certification (at start of project)
- Lack of accuracy data to specify appropriate testing methods
- End users unable to select suitable flow meter for H2 and HENG

TRACEABILITY NEEDS BASED ON STAKEHOLDER NEEDS

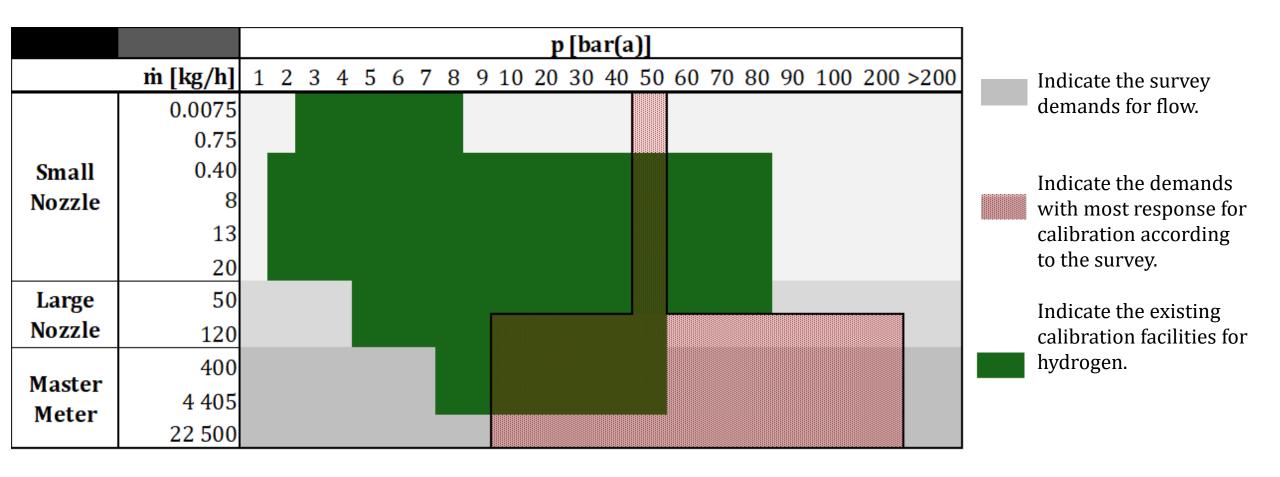
- A2.4.1: Survey for relevant flow metering points for large-scale hydrogen applications
- A2.4.2: Listing stakeholders for the questionnaire and collecting results
 - 75 people contacted, 17 responses

TRACEABILITY NEEDS BASED ON STAKEHOLDER NEEDS

- A2.4.1: Survey for relevant flow metering points for large-scale hydrogen applications
- A2.4.2: Listing stakeholders for the questionnaire and collecting results
 - 75 people contacted, 17 responses

	Demand from the survey A2.4.2							РΠ	oar]		
q [Nm³/h]		ṁ [kg/h]	Answers	[% of Responses]	m [kg/h]	< 2	2	10	50	200	> 200
0 t0 25	0	to 2	5	29	< 2						
25 to 250	2	to 23	7	41	20						
250 to 1350	23	to 122	12	71	120						
1 350 to 2500	122	to 225	12	71	225						
2 500 to 25000	225	to 2,250	12	71	2,250						
25 000 to 250000	2250	to 22,501	9	53	22,500						

OVERVIEW OF HYDROGEN CALIBRATION FACILITIES IN EUROPE 2025



EU Hydrogen calibration facility in kg/h

Calibration facility	Min Flow [kg/h]	Max Flow [kg/h]	Pressure [bar(a)]	Tempera- ture [°C]	Traceability to/ Reference master meter	Media	Pressure		ressure nit
University of Ljubljana	0.0075	0.75	1 - 7	20 ±5°C	Piston Prover	Н2		1 -7	bar(a)
TÜV SÜD NEL	0.035	3	3 - 5	20	PVTt	H2		3 - 5	bar(a)
CESAME EXADEBIT	0.4	20	2 - 81	20	PVTt	H2		1	bar(g)
NaTran	0.4	160	1 - 30	20	Nozzles	H2			
DNV HyFLG flow loop	2.5	125	5 - 40	20 ±5	Master Meter NG and Air	air		5 - 40	bar(a)
RMA H2-Loop	3	4 405	8 - 51	?	Nozzle Master Meter	Н2		8 - 51	bar(a)

SUMMARY OF HYDROGEN TRACEABILITY CHAIN IN EUROPE 2025

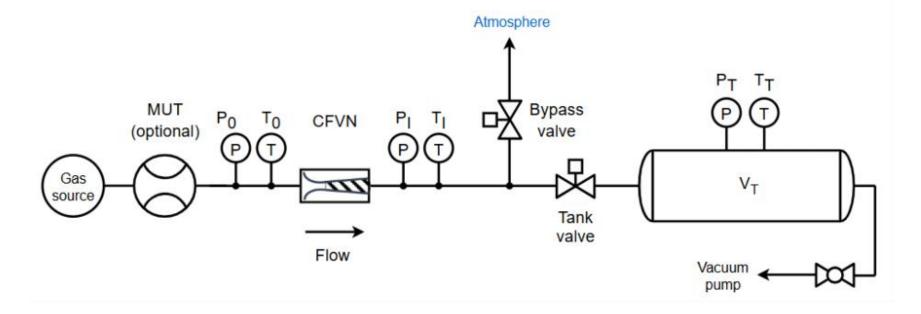
TRACEABILITY CHAIN (SEE PROJECT H2FLOWTRACE)

Achieve required uncertainty for the calibration of meters (0.5 %)

Primary standard for traceability

Use well-established technology for unit dissemination

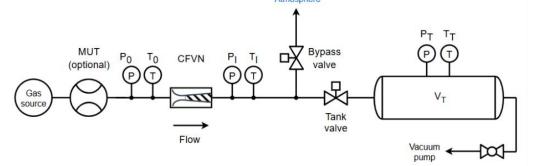
Scaling-up (bootstrapping, several smaller meters in parallel)


Calibration with substitute substances?

TRACEABILITY CHAIN (SEE PROJECT H2FLOWTRACE)

Achieve required uncertainty for the calibration of meters (0.5 %)

Primary standard for traceability: pVTt (Pressure-Volume-Temperature-time)


$$\dot{m} = \frac{V_T \cdot (\rho_{T,final} - \rho_{T,initial}) + V_I \cdot (\rho_{I,final} - \rho_{I,initial})}{t_{final} - t_{inital}}$$

TRACEABILITY CHAIN (SEE PROJECT H2FLOWTRACE)

Achieve required uncertainty for the calibration of meters (0.5 %)

Primary standard for traceability

Use well-established technology for unit dissemination

Scaling-up (bootstrapping, several smaller meters in parallel) -

Calibration with substitute substances?

ISO 9300:2022-Measurement of gas flow by means

ISO 9300:2022

Measurement of gas flow by means of critical flow nozzles

TRACEABILITY CHAIN (SEE PROJECT H2FLOWTRACE)

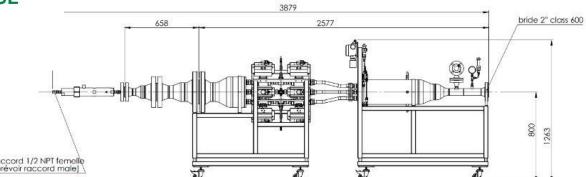
Stage	Standard	Calibrated device	Flow and pressure range	Target expanded uncertainty of calibrated device
1 H ₂ HENG	Primary (pVTt)	Six CFVN (Set A)	Up to 20 kg/h (0.1 to 5.1) MPa	0.15 %
2 H ₂ HENG	Nozzles Gas source	MUT P ₀ T ₀ CFVN (P) T		P _T T _T P T V V Icuum

TRACEABILITY CHAIN (SEE PROJECT H2FLOWTRACE)

Stage	Standard	Calibrated device	Flow and pressure range	ge Target expanded uncertainty of calibrated device	M
1 H ₂ HENG	Primary (pVTt)	Six CFVN (Set A)	Up to 20 kg/h (0.1 to 5.1) MPa	0.15 %	
2 H ₂ HENG	Nozzles Set A	Six CFVN (Set B)	Up to 120 kg/h Up to 3.3 MPa	0.20 % 6 small CFVN (20kg/h)	
			Up to 720 kg/h Up to 6.2 MPa	1 Large CFV	N 120 kg/h

TRACEABILITY CHAIN (SEE PROJECT H2FLOWTRACE)

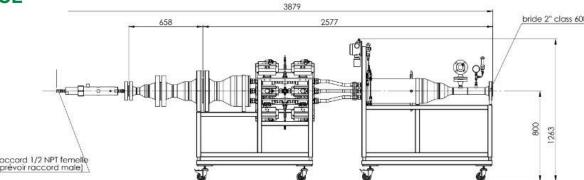
Stage	Standard	Calibrated device	Flow and pressure	range	ed ce	MET	
1 H ₂ HENG	Primary (pVTt)	Six CFVN (Set A)	Up to 20 kg/h (0.1 to 5.1) MPa	6	Large CFVN (120kg/h)	Master meter	
2 H ₂ HENG	Nozzles Set A	Six CFVN (Set B)	Up to 120 kg/h Up to 3.3 MPa			→ MM	•
3 H ₂ HENG	Nozzles Set B	Skid with master meters	Up to 720 kg/h Up to 6.2 MPa		0.30 %		

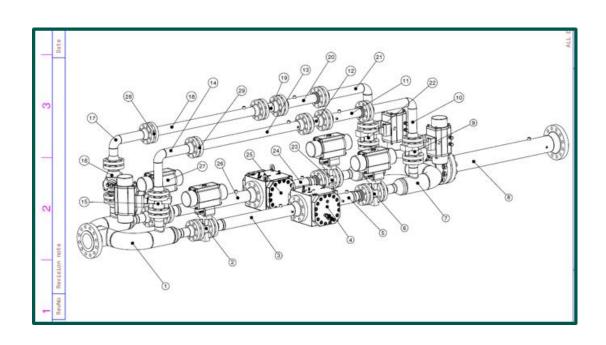

TRACEABILITY CHAIN

Small-Scale Transfer Skid (SSTS)

- Under construction
- House all nozzles from Set A to calibrate nozzle from set B one at a time (120 kg/h)
- House all nozzles from Set B to calibrate master meters one at a time (720 kg/h)

TRACEABILITY CHAIN




Small-Scale Transfer Skid (SSTS)

- Under construction
- House all nozzles from Set A to calibrate nozzle from set B one at a time (120 kg/h)
- House all nozzles from Set B to calibrate master meters one at a time (720 kg/h)

Large-Scale Transfer Skid (LSTS)

- Under construction
- House master meters to be calibrated with SSTS

SUMMARY

A lot happened related to hydrogen flow metering during this project

Traceability chain for hydrogen up to high flow rates is under construction

Critical flow Venturi nozzles to be used as backbone for the dissemination

H2FlowTrace is the next link in the calibration chain

Thank you for your attention

Marc de Huu, METAS

Marc.dehuu@metas.ch

Inter-comparison on trace water in hydrogen standards over the nominal range from 0.5 µmol mol⁻¹ to 50 µmol mol⁻¹ with conclusions and recommendations for future improvements

Paul Carroll (NPL), Dragos Buculei (NPL), Stephanie Bell (NPL), Matthijs Panman (VSL), Rugiada Cuccaro (INRIM), Vito Fernicola (INRIM), Rezvaneh Nobakht (INRIM), Alexander Fateev (DTU)

M36 Stakeholder meeting

Introduction

- Need for water vapour measurement in hydrogen
- How task meets aims of the project
- Principle of an ILC
- Protocol details
- Standards involved in the ILC
- Dew-point temperature and amount fraction value considerations
- Results
- Conclusions / Future Recommendations

Background

- Water vapour measurement is a key parameter for hydrogen quality in the supply chain.
- The requirement to monitor water vapour is a cross-cutting issue over the entire hydrogen supply chain.
- Need water to remain in gas phase at outdoor temperatures and at tank pressures up to 70 MPa (700 bar).
- ISO 14687-2 regulates maximum permitted H₂O level at 5 μmol mol⁻¹
- Reliable measurement of water vapour content is needed by the hydrogen industry (for both quality laboratories and onsite analysers).
- One of the main challenges is to achieve or access a reliable and traceable water vapour standard in the range of 0.5 μmol mol⁻¹ to 50 μmol mol⁻¹ in hydrogen.

Current status of humidity calibration

Hygrometers are typically

developed, tested, and calibrated in atmospheric air or nitrogen

but

often used in other gases and at other pressures

Sensor performance can be affected by use at elevated pressure and by the gas medium of use, depending on sensing principle.

Metrology infrastructure exists for air humidity at all scales (NMI standards, traceable calibration, accreditations)

But, for humidity in other gases and pressures replicating industrial conditions has only recently been established.

Solution required

- Primary humidity traceability to provide calibrations representative of industrial conditions experienced by hygrometers in the real world.
- Many different hygrometer types used to make measurements of humidity in industrial applications.
- Different units depending on measurement principle, commonly dewpoint temperature (°C) and amount fraction of water vapour (µmol mol⁻¹).
- Calibration of hygrometers should be performed using references with traceability to national standards.
- Where possible the calibration should be performed in hydrogen, at the pressure of use.

WP3: Quality control

Develop the metrological tools to ensure reliable and traceable measurements necessary to apply appropriate quality control on hydrogen throughout the supply chain to support the transition into green hydrogen

Provide a good practice guide and new sampling system for industry in order to sample hydrogen gas representatively [Task 3.1]

Demonstrate equivalence between water vapour gas standards and new and innovative portable standards [Task 3.2]

Develop the metrological infrastructure for key reactive gases for electrolysers (water vapour and HCl) and for the supply chain (sulphur and ammonia) [Task 3.3]

Implement metrological guidelines for the onsite calibration and onsite analysis of key contaminants of the supply chain (i.e., H2O) [Task 3.4]

Met4H2 Task 3.2 Traceability - Improving measurement quality and calibration for water vapour amount fraction

Demonstrate equivalence between water vapour gas standards and new and innovative portable standards:

- A3.2.1 Transportable precision humidity generator & high-pressure frost-point generator
- A3.2.3 Plan and protocol for Inter-laboratory comparison
- A3.2.4 Inter-laboratory comparison of water vapour realisations
- A3.2.5 Report on the results of the interlaboratory comparison

Principle of an inter-laboratory comparison

A demonstration of the capabilities of measurement standards and their associated uncertainties.

Transfer standard instruments are circulated between participants who realise a set of reference values from an agreed protocol using their standards.

Measurement errors are reported to the pilot by participant laboratories with their associated uncertainties.

Initial, mid-point and final measurements at the pilot laboratory enable evaluation of any drift in the transfer standard instruments.

Figure 1 Overview of the comparison schedule

In this work we look to compare water vapour realisations in hydrogen at three European National Measurement Institutes.


Existing NPL standard

- Multi-gas, Multi-pressure Primary Standard Humidity Generator
- Humidity calibrations in "industrial" conditions.
- Non-air gases (e.g methane, nitrogen, CO₂, argon, hydrogen)
- Pressures up to 3 MPa (30 bar)

- Hybrid generator able to calibrate in single pressure dew point mode from -60 °C to +15 °C (0.5 μmol mol⁻¹ < x < 50 μmol mol⁻¹)
- Ability to mix gases using array of mass flow controllers

A3.2.1 VSL standard development

VSL
National Metrology

VSL – Modifications to the High-Pressure Dewpoint Generator

Modifications

- VCR face-seal fittings or AbT fittings (assembly by torque).
- Welded tubing.
- Atex H₂ compatible pressure meters.
- Auxiliary optical table to accommodate various instruments.

For safety

- Pneumatic shut-off valve.
- Proportional release valve.
- LEL detector.
- Check valves.
- 300 m³.hr⁻¹ extraction of exhaust sample gas.

Dew point temperature:

-80 °C to +20 °C

Amount fraction:

(0.01 μmol mol-1 < x < 2000 μmol mol-1).

Operating pressure:

0.1 MPa to 6 MPa

A3.2.1 INRIM standard development

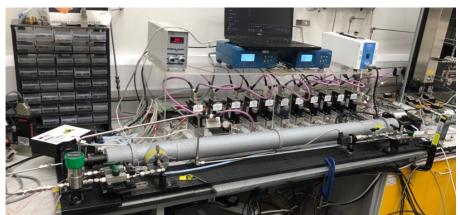
INRIM developed and validated a Transportable precision humidity generator (TPHG)

TECHNICAL CHARACTERISTICS:

- Frost point temperature:
 -55° C < T_{fp} < -10° C at pressure
- Water vapor amount fraction: $0.5 \mu \text{mol mol}^{-1} < x_{\text{w}} < 50 \mu \text{mol mol}^{-1}$
- Pressure: 0.1 MPa < P < 5.5 MPa; tested up to 3 MPa
- Target Uncertainty: $3 \% < u_r(x_w) < 5 \%$

Transfer standard instruments used during inter-laboratory comparison

A C.O.S dew-point temperature measurement principle instrument: MBW 373HPLX high-pressure chilled mirror hygrometer


A C.O.S water vapour amount fraction measurement principle instrument: Tiger Optics SPARK water vapour spectrometer

A research prototype spectrometer: far-UV water vapour spectrometer developed by DTU

A3.2.3 Inter-laboratory comparison - Protocol details

NPL, INRIM, VSL, DTU, POLITO Plan an inter-laboratory comparison of water vapour realisations and measurements in hydrogen in the range of amount fractions between nominally 0.5 µmol mol⁻¹ and 50 µmol mol⁻¹.

Water vapour ranges, operating pressures, and gas species compatibilities all considerations in agreeing comparison values.

Metrology for the hydrogen supply chain

Inter-laboratory comparison of standards for trace water in hydrogen over the nominal range -60 °C to -15 °C frost-point temperature (0.5 μmol mol⁻¹ to 50 μmol mol⁻¹)

Inter-laboratory comparison protocol

Table 1 List of the transfer standard hygrometers.

Manufacturer	Model	Serial number	Measurement principle	Operating range	Inlet pressure	Compatible gas species
					range / MPa	
MBW	373 LX-HP	14-0610	Chilled-mirror condensation	-60 °C to +20 °C	0.1 to 3	Air, N ₂ , H ₂
Tiger Optics	F7700 -ATM	6159- 145-0	CRDS water vapour spectrometer	0 – 1750 μmol mol-1	0.2 to 0.96	Air, N ₂ , H ₂
DTU	Proto- type	n/a	Far-UV spectroscopy	1 - 300 μmol mol-1	0.1 to 4 (H ₂) 0.1 to 10 (N ₂)	N ₂ , H ₂

Table 2 Measurement values at 0.2 MPa test pressure:

Nominal Frost-point temperature / °C	Nominal equivalent water vapour amount fraction / µmol mol-1
-60.7	5
-52.3	15
-42.3	50

Table 3 Measurement values at 3 MPa test pressure:

	fraction / µmol mol-1
-59.0	0.5
-40.0	5
-17.3	50

Nominal Frost-point temperature / °C

INRIM NPL

Figure 1 Overview of the comparison schedule

Nominal equivalent

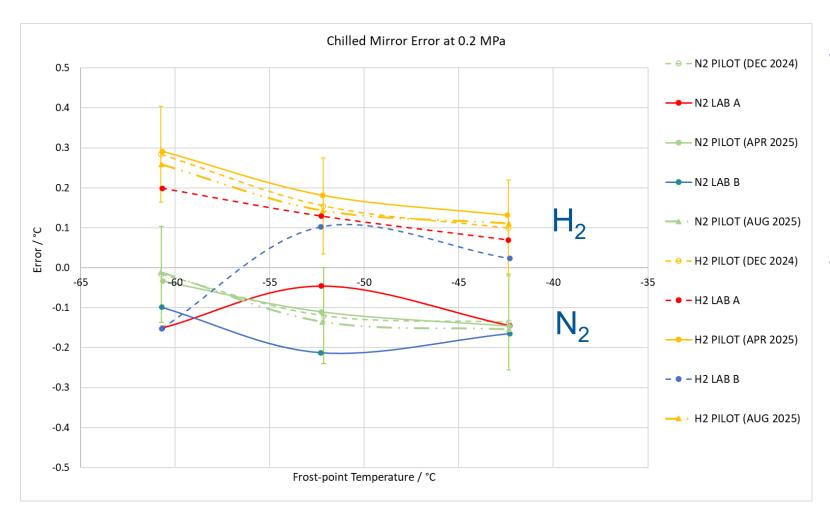
water vapour amount

Inter-laboratory comparison of water vapour realisations

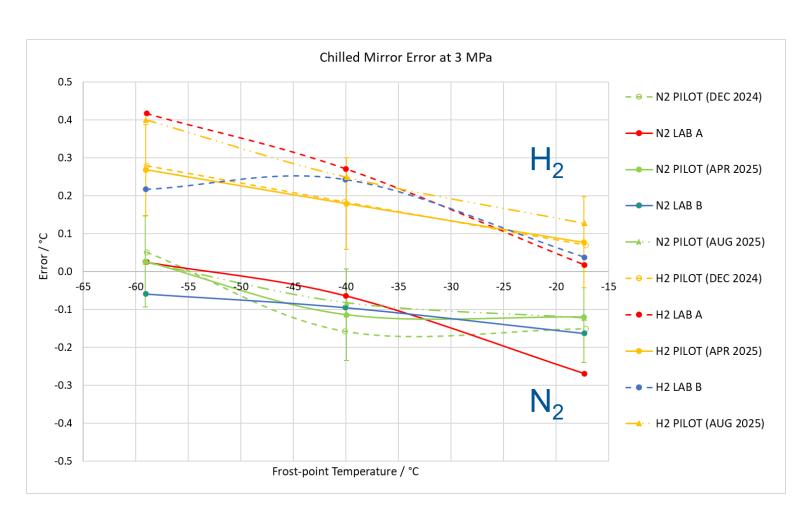
A3.2.4 –NPL, INRIM, VSL, DTU, POLITO Using the protocol defined in A3.2.3, NPL, DTU, INRIM, POLITO and VSL performed an inter-laboratory comparison of the different trace water in hydrogen standards developed by the participants.

Final measurements completed at NPL just last week.

Nominal Frost- point temperature / °C	Nominal equivalent water vapour amount fraction / µmol mol ⁻¹	Test pressure / MPa
-60.7	5	0.2
-59.0	0.5	3
-52.3	15	0.2
-42.3	50	0.2
-40.0	5	3
-17.3	50	3

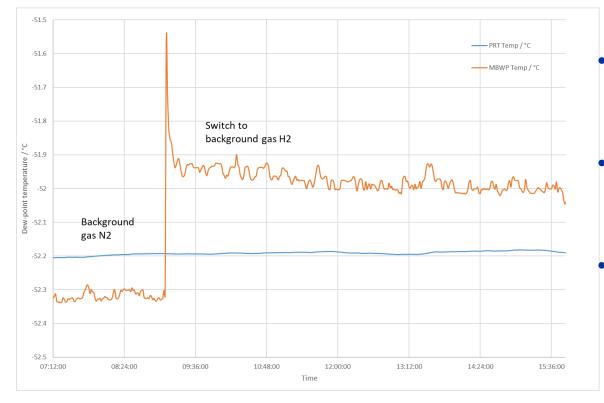

Carrier gas: Nitrogen and hydrogen.

Single-pressure dew-point temperature comparison results at 0.2 MPa



- CMH over-read more in hydrogen compared to nitrogen background gas at all labs.
- In both hydrogen and nitrogen, participants mainly agreed within NPL uncertainties (k = 2 error bars shown) except LAB B in hydrogen at -60 °C.

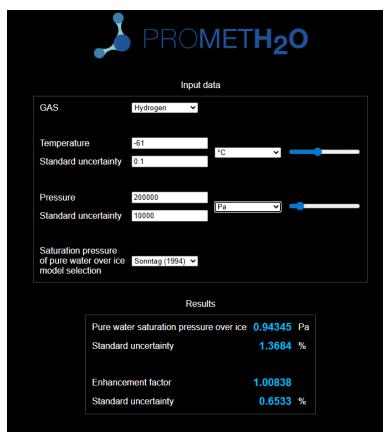
Single-pressure dew-point temperature comparison results at 3 MPa


- CMH over-read more in hydrogen compared to nitrogen background gas at all labs.
- In both hydrogen and nitrogen, participants mainly agreed within NPL uncertainties (shown) – except some scatter seen at -60 °C.

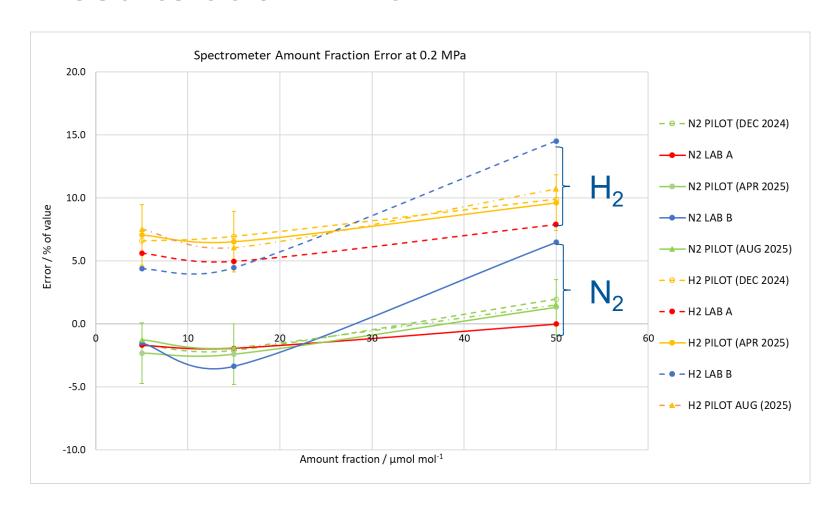
Conclusions – Chilled Mirror results

- This CMH over-read in hydrogen compared to nitrogen background gas at all labs.
- Consistent error change in hydrogen for all participants meant results still useable measurements for ILC purposes.
- Response of CMH to change to hydrogen background gas can take many hours to stabilise at trace moisture values.

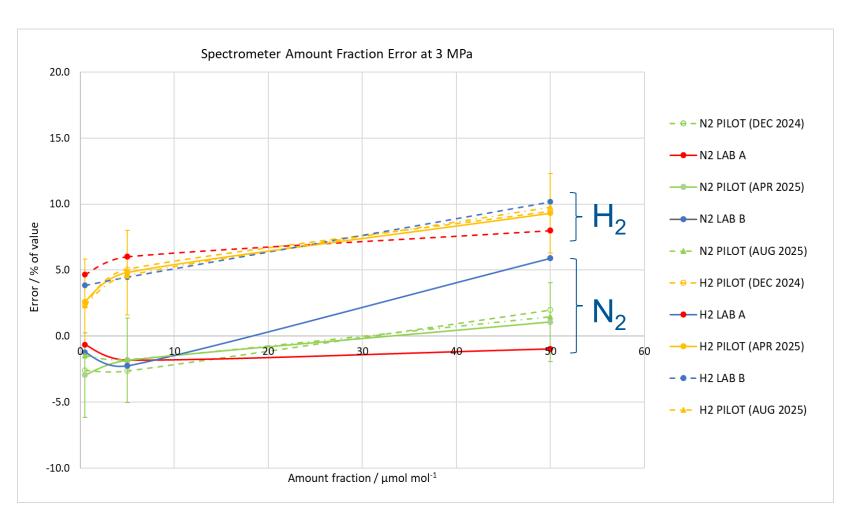
- Some participants could operate in hydrogen overnight, others just during hours when staff present a different error would result if left longer.
- CMH error appears to have drifted to over-reading in hydrogen over the duration of the ILC according to pilot final repeat results.
- Transfer standard uncertainty contributions to be evaluated and applied to equivalence analysis.


Reference dew-point temperature to amount fraction value conversion considerations

- When calculating amount fraction of water vapour (x) from dewpoint temperature (t_d) or vice versa, the **water vapour** enhancement factor (f) is needed in the calculations.
- By this factor the deviation of a real gas mixture from pure water vapour is compensated.
- Widely accepted data for WVEF exists for air, but only emerging for other gas species.
- Agreed in ILC for pilot to apply consistent WVEF f values to calculate x values from all participants measurements of t_d and P.
- f-calculator from ProMetH2O EMPIR project used to calculate 0.2 MPa values. (Use limited to 1 MPa)
- www.prometh2o.unicas.it/
- NPL experimental data from MefHySto EMPIR project used for estimates of *f* at 3 MPa.


$$x = \frac{f(P, t_d)e(t_d)}{P}$$

Amount fraction Spectrometer comparison results at 0.2 MPa



- Spectrometer over-read more in hydrogen compared to nitrogen background gas at all labs.
- In both hydrogen and nitrogen, participants mainly agreed within NPL uncertainties (shown) except LAB B at 50 μmol mol⁻¹.

Amount fraction Spectrometer comparison results at 3 MPa

- Spectrometer over-read more in hydrogen compared to nitrogen background gas at all labs.
- In hydrogen participants agreed within NPL uncertainties (shown), in nitrogen agreement again ok except LAB B at 50 µmol mol⁻¹ in nitrogen.

Conclusions – Spectrometer results

- Conversion of reference frost point to amount fraction would be affected by choice of water vapour enhancement factor – pilot applied same WVEF calculation to conversion of each participant's results.
- Hydrogen values for spectrometer appear to be over-reading compared to measurements of nitrogen at same water contents.
- This error is not due to the operator using an incorrect background gas "mode" as it is known that the error due to this is much larger than that observed.
- Not possible at this stage to distinguish if this is measurement error due to background gas change in generator, choice of WVEF equation used to calculate reference values or instrument error background gas dependence.
- Consistent error change in hydrogen for all participants meant still useable measurements for ILC purposes.
- Transfer standard uncertainty contributions still to be evaluated and applied to equivalence analysis.
- DTU spectrometer results being analysed and D5 report to be issued by end of month.

Equivalence reporting template: Water Vapour spectrometer

1. Results: amount fraction (using water vapour spectrometer)

1.1 Saturator pressure: 0.2 MPa

Table 1.1.1. Amount fraction: 5 mol mol-1

Gas: N ₂						Gas: H ₂					
	INRII	M	NPL	VSL]		INRII	Л	NPL	VSL	
INRIM]	INRIM					
NPL]	NPL					
VSL					1	VSL					

Table 1.1.2. Amount fraction: 15 mol mol-1

Gas: N ₂						Gas: H ₂					
	INRIN	1	NPL	VSL]		INRII	VI.	NPL	VSL	
INRIM]	INRIM					
NPL					1	NPL					
VSL						VSL					

Table 1.1.3. Amount fraction: 50 mol mol-1

Gas: N ₂	Sas: N ₂							Gas: H ₂					
	INRIN	Л	NPL		VSL]		INRII	VI.	NPL	VSL	
INRIM								INRIM					
NPL								NPL					
VSL]	VSL					

1.2 Saturator pressure: 3 MPa

Table 1.2.1. Amount fraction: 0.5 mol mol-1

Gas: I	N ₂						Gas: H ₂					
		INRIN	1	NPL	VSL			INRII	Л	NPL	VSL	
INRI	М						INRIM					
NPL	. [NPL					
VSL							VSL					

Table 1.2.2. Amount fraction: 5 mol mol-1

Gas: N ₂				Gas: H ₂			
	INRIM	NPL	VSL		INRIM	NPL	VSL
INRIM				INRIM			
NPL				NPL			
VSL				VSL			

Table 1.2.3. Amount fraction: 50 mol mol-1

Gas: N ₂					Gas: H ₂			
	INRIM	NPL	VSL	7		INRIM	NPL	VSL
INRIM				7	INRIM			
NPL				7	NPL			
VSL					VSL			

Equivalence reporting template: Chilled Mirror hygrometer

2. Results: frost point (using cooled-mirror hygrometer)

2.1 Saturator pressure: 0.2 MPa

Table 2.1.1 Saturator temperature (frost point at 0.2 MPa): -60.7 °C

(Gas: N ₂						Gas: H ₂					
		INRIN	Л	NPL	VSL]		INRII	Л	NPL	VSL	
	INRIM						INRIM					
	NPL						NPL					
	VSL						VSL					

Table 2.1.2. Saturator temperature (frost point at 0.2 MPa): -52.3 °C

Gas: N ₂						Gas: H ₂					
	INRIN	Л	NPL	VSL]		INRII	Л	NPL	VSL	
INRIM]	INRIM					
NPL]	NPL					
VSL]	VSL					

Table 2.1.3 Saturator temperature (frost point at 0.2 MPa): -42.3 °C

Gas: N ₂						Gas: H ₂					
	INRIN	Л	NPL	VSL]		INRIN	Л	NPL	VSL	
INRIM						INRIM					
NPL						NPL					
VSL						VSL					

2.2 Saturator pressure: 3 MPa

Table 2.2.1. Saturator temperature (frost point at 3 MPa): --59.0 °C

Gas: N2						Gas: H2					
	INRIM	П	NPL	VSL	1		INRIN	1	NPL	VSL	
INRIM					1	INRIM					
NPL					1	NPL					
VSL						VSL					

Table 2.2.2. Saturator temperature (frost point at 3 MPa): -40.0 °C

Gas: N2					Gas: H ₂					
	INRIM	NPL	VSL			INRIM	l	NPL	VSL	
INRIM					INRIM					
NPL					NPL					
VSL					VSL					

Table 2.2.3. Saturator temperature (frost point at 3 MPa): -17.3 °C

Gas: N ₂						Gas: H2					
	INRIN	1	NPL	VSL			INRIN	Л	NPL	VSL	
INRIM						INRIM					
NPL						NPL					
VSL						VSL					

Recommendations for future improvements

- Spend longer characterising transfer standards to better understand response time.
- If no overnight operation possible ensure only faster responding instruments used.
- Consider scope at planning stage if evaluating equivalences, many equivalence tables might be needed:
 - ➤ No. of tables = measured quantities x pressures x gas species x measured values
- Participants may choose their own conversions (enhancement factors) or this may be standardised decide which is relevant.
- Consider required inlet pressure if selecting a spectrometer for use. Not all can be operated at nominally atmospheric inlet pressure, only selected models.
- Consider which humidity quantity is the most meaningful for the comparison based on the capabilities of the participants.

Deliverable of WP3

D5: Report on the results of the intercomparison on trace water in hydrogen standards over the nominal range from 0.5 μ mol/mol to 50 μ mol/mol with conclusions on the recommendations for future improvements

NPL, INRIM, VSL, DTU, POLITO – M36 Sep 2025

- Last ILC measurements made in early September 2025.
- Final analysis and draft of report in progress for publication by the end of the month.

Summary

- Need for water vapour measurement in hydrogen
- How task meets aims of the project
- Principle of an ILC
- Protocol details
- Standards involved in the ILC
- Dew-point temperature and amount fraction value considerations
- Results
- Conclusions / Future Recommendations

Thank you!

paul.carroll@npl.co.uk

www.npl.co.uk/temperature-humidity

Metrologically-traceable quality monitoring in the H₂ supply chain

and recommendations for improving ISO 19880-8 and ISO 21087

Vito Fernicola on behalf of Met4H2 Partners

Hydrogen quality control tools in Met4H2

Developing metrological tools to ensure reliable and traceable measurements necessary to apply appropriate quality control on hydrogen throughout the supply chain to support the transition into green hydrogen

Provide a good practice guide and new sampling system for industry in order to sample hydrogen gas representatively

Demonstrate equivalence between water vapour gas standards and new and innovative portable standards

Develop the metrological infrastructure for key reactive gases for electrolysers (water vapour and HCl) and for the supply chain (sulphur and ammonia)

Implement metrological guidelines for the onsite calibration and onsite analysis of key contaminants of the supply chain (i.e., H2O)

Focus of this presentation

Good practice guide focused on <u>traceable measurement</u>, online analysis, on-site calibration and validation using reference standards and offline measurements relevant to the hydrogen supply chain:

- i. Traceable quality monitoring in alkaline electrolyser
- ii. Traceable quality monitoring in hydrogen distribution
- iii. Lesson learnt, recommendations and inputs to ISO19880-8 and ISO 21087

What this piece of work delivered?

Intercomparison on trace water in hydrogen standards over the nominal range from 0.5 µmol/mol to 50 µmol/mol with conclusions on the recommendations for future improvements

NPL, INRIM, VSL, DTU, POLITO

Good practice guide on metrologically traceable quality monitoring in the hydrogen supply chain, including offline measurements and onsite calibration, and recommendations for future improvements of ISO 19880-8 and ISO 21087

<u>INRIM</u>, BAM, CEM, DFM, NPL, PTB, VSL, VTT, DTU, ENVIPARK, Nippon Gases, POLITO

Sampling strategies and requirements for H₂ analysis

Review of sampling strategy and requirements for hydrogen quality analysis

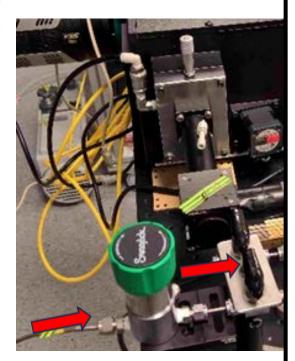
Report number Met4H2 – A3.1.1 and A3.1.2

Task	Activity	Reporting date					
3.1	A3.1.1 and A3.1.2	xx					
Title							
Review of sampling strategy and requirements for hydrogen quality analysis							
Authors		Corresponding author					
Ziyin Chen (NPL), Thomas Bacquart (NPL), Vito C Fernicola (INRIM), Davide Trapani (ENVIPARK), Stefano Boggio (NIPPON GASES), Pasquale Colacino (NIPPON GASES)							
Contributing partners NPL (UK), INRIM (IT), ENVIPARK (IT), NIPPON GASES (IT)							
Key words							
Sampling requirements, samplin	g system, gas cylinders						
Notice							
This work was funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EURAMET. Neither the European Union nor the granting authority can be held responsible for them.							
The contents of this report have been obtained using best scientific practices and have been peer- reviewed prior to release. Nevertheless, the material is provided "as is", without any kind of warranty regarding correctness, completeness, or fitness-for-purpose.							
Acknowledgement							
The project Met4H2 21GRD05 has received funding from the European Partnership on Metrology, co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.							
DOI	License	Copyright					
Feedback							
The consortium welcomes feedb	ack. Please send your comments,	suggestions or other feedback to					

Table 1 Requirement of the sampling points in industry										
No	Scenario	pressure	Humidity	Temperature	Sampling frequency	Sampling duration	Safety	Volume	Key compounds	Venting option
1	Alkaline electrolyser	5 <u>bar</u>	N/A	N/A	Continuous monitoring	During electrolyser operation	According to the classification provided in the electrolyser user manual	Hydrogen: 10.66 m3/h (in nominal conditions) Oxygen: 5.33 m3/h (in nominal conditions)	Hydrogen concentration in the oxygen stream Oxygen concentration in the hydrogen stream Traces of electrolyte (i.e., NaOH) Humidity	N/A
2	SMR before PSA	< 30 bar (_ normally around 15 bar)	N/A	Ambient (max 38°C)	N/A	N/A	ATEX zone 2	N/A	N/A	N/A
3	SMR after PSA	< 30 bar (_ normally around 15 bar)	≤ 5 ppm	Ambient (max 38°C)	1/day	10 min	ATEX zone 2	2.5 l/min	O2, H2O, CO2, N2, CO, CO2, CH4 (THC)	Yes, through the line in the lab
4	(SMR + PSA) to Storage/Pipeline/compressors	14 <u>bar</u>	≤ 5 ppm	Ambient	1/day (each line)	10 min	ATEX zone 2	2.5 l/min	O2, H2O, CO2, N2, CO, CO2, CH4 (THC)	Yes, through the line in the lab
5	H2 from compressors (bundles, <u>cylinders</u> and Tube trailers)	200 <u>bar</u>	≤ 5 ppm	Ambient	1/day	10 min	ATEX zone 2	2.5 l/min	O2, H2O, CO2, N2, CO, CO2, CH4 (THC)	Yes, through the line in the

For <u>example</u> 1, 2, 3 and 4, a system without pressure regulation may be suitable if components are within pressure rating For <u>example</u> 5, the system require pressure regulation as gas cylinder are rated below

the project coordinator, Dr. Adriaan van der Veen (VSL), avdveen@vsl.nl.


Hydrogen sampling systems

MET4H₂

Hydrogen gas quality - <u>Good</u> practice guide and recommendations for hydrogen gas sampling online and offline Met4H2-A3.1.5

DTU sampling system: up

Task	Activity	Reporting date
3.1	3.1.5	XXX.2025
Title		

Good practice guide and recommendations for hydrogen gas sampling online and offline

Authors Corresponding author

Fangyu Zhang (NPL), Shirin Khaki (NPL), Linga Reddy Fangyu Zhang Enakonda (NPL), Hannah Kerr (NPL), Abigail S. O. Morris (NPL), Thomas Bacquart (NPL), Vito C. Fernicola (INRIM), Rugiada Cuccaro (INRIM), Rezvaneh Nobakht (INRIM), Alexander Fateev (DTU), Ilaria Schiavi (Envipark), Stefano Boggio (Nippon Gases), Simone Mandarino (Nippon Gases), Luca Augello (Nippon Gases), Luca Berardino (POLITO), Gabriele Restaldo (SAGAT), Matthias Richter (BAM)

Contributing partners

NPL (UK), NRIM (IT), DTU (DK), Envipark (IT), Nippon Gases (IT), POLITO (IT), SAGAT (IT), BAM (DE)

Key words

Sampling, hydrogen gas quality, hydrogen distribution, alkaline electroylser

Notice

This work was funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EURAMET. Neither the European Union nor the granting authority can be held responsible for them.

The contents of this report have been obtained using best scientific practices and have been peerreviewed prior to release. Nevertheless, the material is provided "as is", without any kind of warranty regarding correctness, completeness, or fitness-for-purpose.

Acknowledgement

The project Met4H2 21GRD05 has received funding from the European Partnership on Metrology, co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.

DOI	License	Copyright
n/a		n/a

Feedback

The consortium welcomes feedback. Please send your comments, suggestions or other feedback to the project coordinator. Dr. Adriaan van der Veen (VSL), avdveen@vsl.nl.

ling system: 10 -to- 875 bar

Survey of key reactive gases in electrolysers and the supply chain


Literature review

Data obtained from the literature review were **not enough to build** a **real scale for the probability classes of occurence** of different type of contaminants in H₂

Even before considering the possibility of performing an experimental campaign, it's possible to suggest that the class of events producing considerable amounts of H₂O, O₂, N₂ (non-necessarily over the thresholds) could be very likely, since the frequency with which they are looked for in the studied articles is significantly higher with respect to the other contaminants.

For other kind of contaminants for which a particular interest in the consortium and in the task was expressed (e.g. HCl, Cl₂) nothing certain can be affirmed without experimental data. Their absence among the contaminants detected reflects indeed only a lack of articles searching for them and not an effective evidence of detection of no-traces of them.

Contaminants occurrence assessment

Probability of occurrence of the contaminants in hydrogen distribution Report number Met4H2 - A3.4.1

Activity Reporting date 3.4 A3.4.1

Probability of occurrence of contaminants in hydrogen distribution

Ziyin Chen (NPL), Thomas Bacquart (NPL), Stefano Boggio (NIPPON GASES), Pasquale Colacino (NIPPON GASES)

Corresponding author

Contributing partners

NPL (UK), NIPPON GASES (IT)

Probability of occurrence, steam methane reforming, pipeline distribution, ammonia, hydrogen carrier

This work was funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EURAMET. Neither the European Union nor the granting authority can be held responsible for them.

The contents of this report have been obtained using best scientific practices and have been peerreviewed prior to release. Nevertheless, the material is provided "as is", without any kind of warranty regarding correctness, completeness, or fitness-for-purpose.

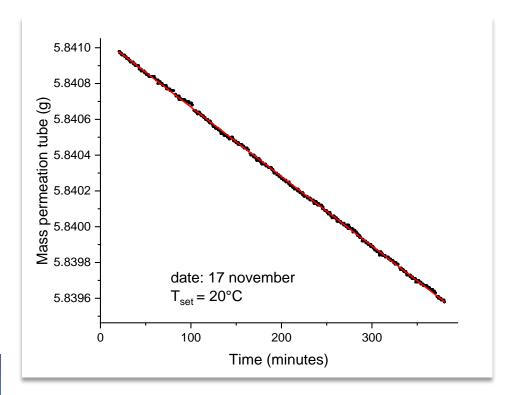
The project Met4H2 21GRD05 has received funding from the European Partnership on Metrology, co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.

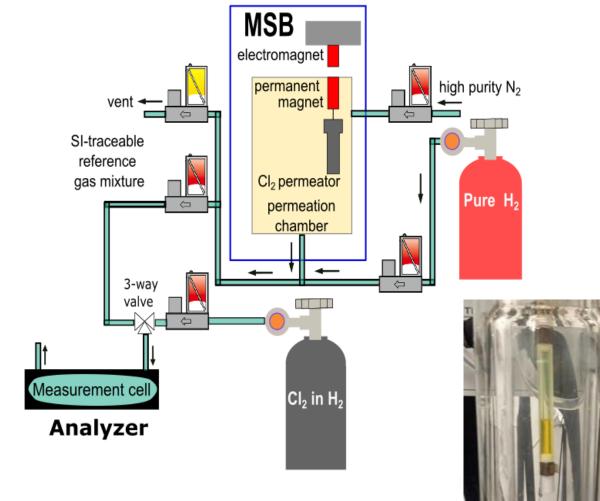
DOI	License	Copyright

The consortium welcomes feedback. Please send your comments, suggestions or other feedback to the project coordinator, Dr. Adriaan van der Veen (VSL), avdveen@vsl.nl.

	Threshold in ISO	Probability of occurrence	Probability of occurrence of contaminants in pipeline		Probability of occurrence of
Contaminants	ontaminants 14687:2019	of contaminants in SMR		Dedicated hydrogen pipeline	contaminants in transport hydrogen as ammonia
Inert gas: N2	300	Possible (3)	Frequent (4)	Very rare (1)	Possible (3)
Inert gas: Ar	300	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)
Oxygen	5	Rare (2)	Rare (2)	Very rare (1)	Very rare (1)
Carbon dioxide	2	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)
Carbon monoxide	0.2	Rare (2)	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)
Methane	100	Very rare (1)	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)
Water	5	Possible (3)	UD	Rare (2)	Rare (2)
Total Sulphur compounds	0.004	Very unlikely (0)	Frequent (4)	Very unlikely (0)	Very unlikely (0)
Ammonia	0.1	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)	Possible (3)
Total Hydrocarbons (excluding CH4)	2	Rare (2)	Frequent (4)	Very unlikely (0)	Very rare (1)
Formaldehyde	0.2	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)
Formic acid	0.2	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)
Halogenated compounds	0.05	Very unlikely (0)	Very rare (1)	Very rare (1)	Very unlikely (0)
Helium	300	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)	Very unlikely (0)

The work "Monitoring of hydrogen purity in the hydrogen supply chain: metrological approach from contaminants occurrence assessment to online monitoring" was presented in The World Hydrogen Energy Conference, 2024, Cancun.

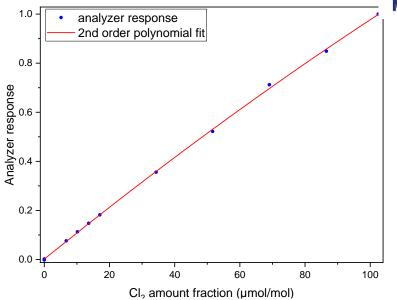

Developing the measurement infrastructure ...

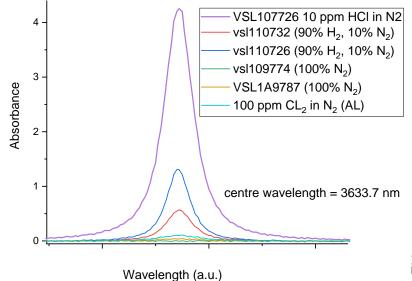


Reference gas mixtures: Cl_2 in N_2 or H_2

Cl₂ permeation (permeation rate 3.9-to-7.5 µg/min) used to certify the prepared static standards (static

mixtures were –10% compared to permeation).

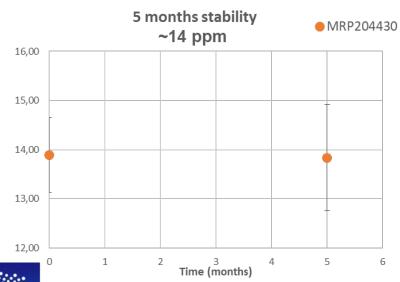



Reference gas mixtures: Cl₂ in N₂ or H₂

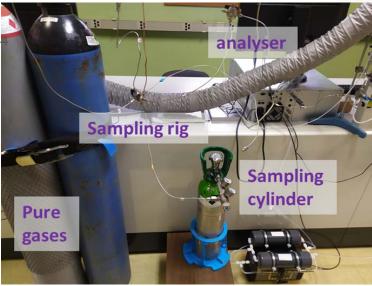
MET4H₂

- Obtained 104 μmol/mol Cl₂ in N₂ (50 L). Dynamic dilutions were analysed using cavity-enhanced spectroscopy.
- Prepared 2 mixtures of Cl_2 in N_2 and 2 mixtures of Cl_2 in H_2 (10 L cylinders, Aculife IV).
- Stability study completed. N_2 mixtures relatively stable, H_2 mixtures decreasing.
- HCl formed (in particular in the H₂ matrix, up to 5 µmol/mol)

$$H_2 + Cl_2 \rightarrow 2 HCl$$

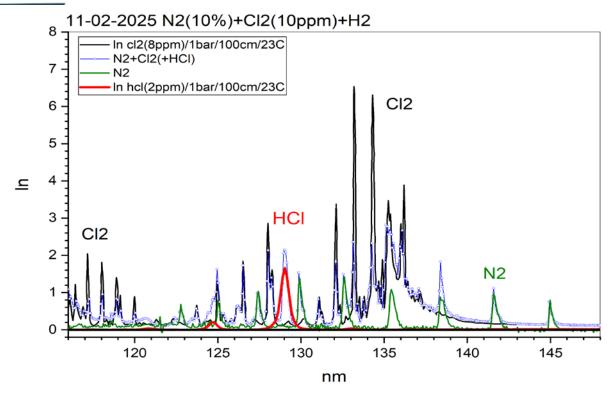




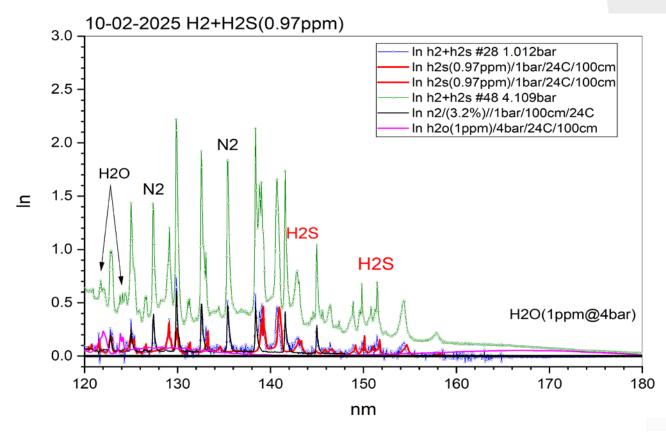


Stability study

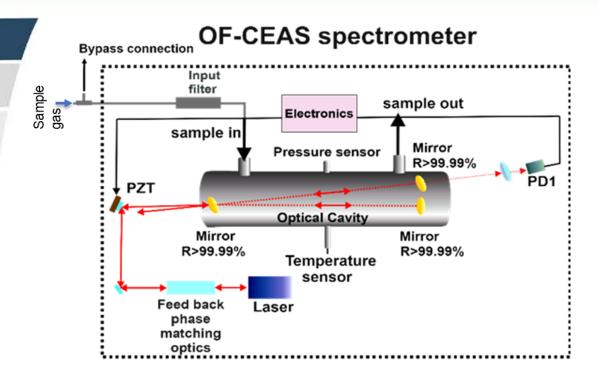
- A key challenge in PRO-CEAS spectroscopic analysis is the **high gas consumption** during measurements which makes it challenging to undertake long-term stability studies.
- 5 L aluminium alloy cylinders with ACULIFE® IV passivation.

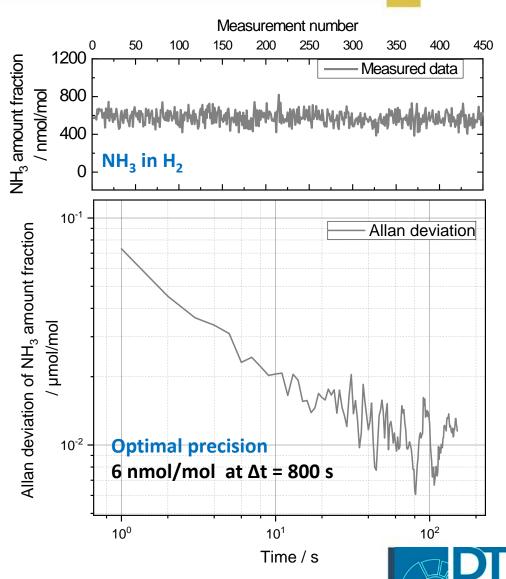


Multicomponent gas analyser (HCl, H_2S , H_2O and CO_2 in H_2)



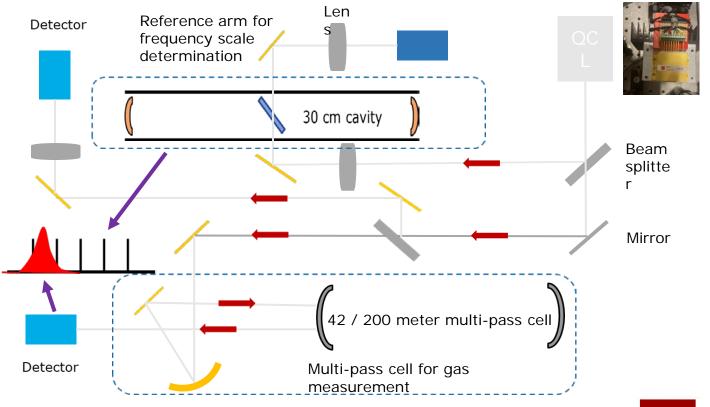
- HCl(2ppm) modelled spectrum: red
- Cl2(8ppm) modelled spectrum: **black**
- N2 reference: olive




- Exp. data: absorption spectrum in H2+H2S(0.97ppm) at 1 bar: blue
- H2S(0.97ppm) modelled spectrum at 1 bar: red
- N2(3.2%) modelled spectrum at 1 bar : **black**
- Exp. Data: absorption spectrum in H2+H2S(0.97ppm) at <u>4 bar</u>: olive

Measurements of NH₃ in H₂

- Spectroscopic method based on Optical-feedback cavity enhanced absorption spectroscopy (OF-CEAS)
- Measurement are performed without prior calibration of the instrument
- Target amount fraction range: 6 1000 nmol/mol
- Combined uncertainty: 5 %

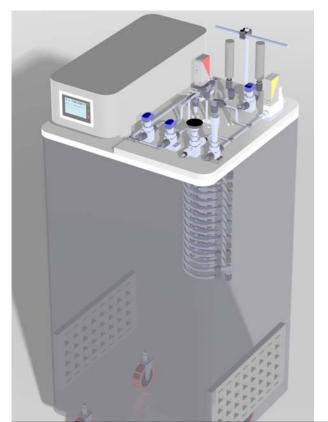

Photoacoustic method development for NH₃

Gas calibration free method.

Accurate knowledge of molecular line strength, temperature, pressure and absorption path length required.

Butterfly DFB laser Compact photoacoustic cell cell

Providing traceability to water vapour measurements in H₂


- ☐ Transportable precision humidity generator and high-pressure frost-point generator
- Novel methods for water vapour cylinder production
- Inter-laboratory comparison of water vapour realisations
- Demonstrate the equivalence between water vapour gas standards and new and innovative portable standards

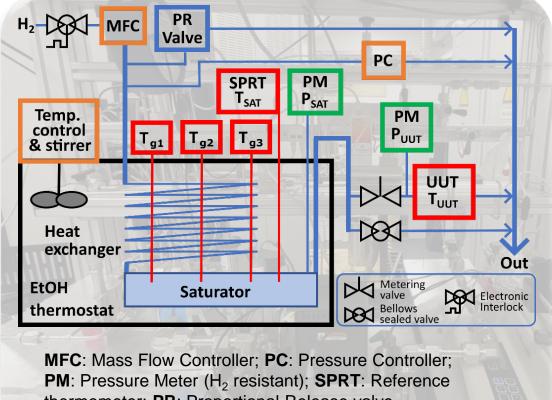
INRIM Transportable Precision Humidity Generator for H₂

System in operation

TECHNICAL CHARACTERISTICS:

- Frost point temperature: -55 $^{\circ}$ C < $T_{\rm fp}$ < -10 $^{\circ}$ C at pressure
- Water vapor amount fraction: 0.5 μ mol/mol < x_w < 50 μ mol/mol
- Pressure: 0.1 MPa < P < 5.5 MPa; tested up to 3 MPa
- Target Uncertainty: $3 \% < u_r(x_w) < 5 \%$

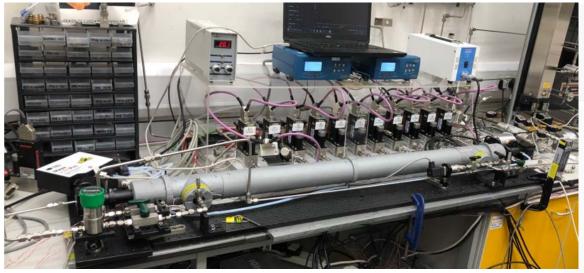
Heat exchanger and saturator



VSL High-Pressure Dewpoint Generator

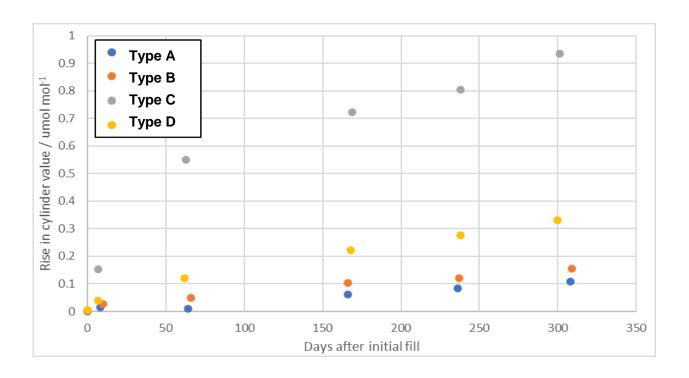
thermometer; PR: Proportional Release valve.

TECHNICAL CHARACTERISTICS:


- Frost point temperature: -80 $^{\circ}$ C < $T_{\rm fp}$ < +20 $^{\circ}$ C at pressure
- Water vapor amount fraction: 0.5 μ mol/mol < x_w < 100 μ mol/mol
- Pressure: 0.1 MPa < P < 6 MPa; tested up to 6 MPa
- Target Uncertainty: $3 \% < u_r(x_w) < 5 \%$

NPL Multi-gas, multi-pressure primary standard humidity generator

TECHNICAL CHARACTERISTICS:

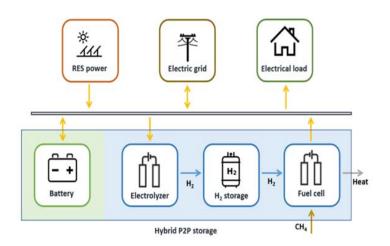

- Frost point temperature: -60 °C < $T_{\rm fp}$ < +15 °C at pressure
- Water vapor amount fraction: 0.5 μ mol/mol < $x_{\rm w}$ < 0.5 %
- Pressure: 0.1 MPa < P < 3 MPa; tested up to 3 MPa

Novel method of H₂O reference cylinder production

- Novel method transfers NPL Multi-gas, Multi-pressure Primary Standard Humidity Generator traceability to binary H₂O gas mixtures in cylinders.
- NPL evaluated the accuracy and stability of different surface coatings of cylinders over 10 months in project lifetime

Industrial demonstration - round 1

The demonstration was carried out on a 6-kW electrolyser installed at Torino Airport.



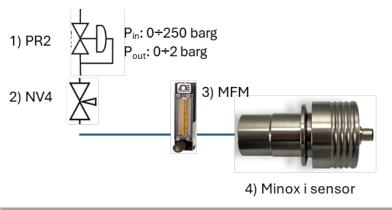
Online/onsite monitoring of AEM electrolyser at the Torino Airport

Alkaline Exchange Membrane (AEM) electrolyser was made available by the Airport Authority (SAGAT) who is a project collaborator. The electrolyser is part of a demonstration plant developed within the Horizon 2020 Project TULIPS

Onsite measurements were carried out at a hydrogen production location at the Torino Airport. The activities performed by INRIM and NPL:

- Gas sampling
- Online measurements concerning the content of oxygen and water vapour in the hydrogen stream.

ENVIPARK, POLITO, INRIM and NPL identified the best sampling points in the section of tubing just before the mixing skid and receiving hydrogen from either the storage or directly from the electrolyser.



Instruments and sensors selection

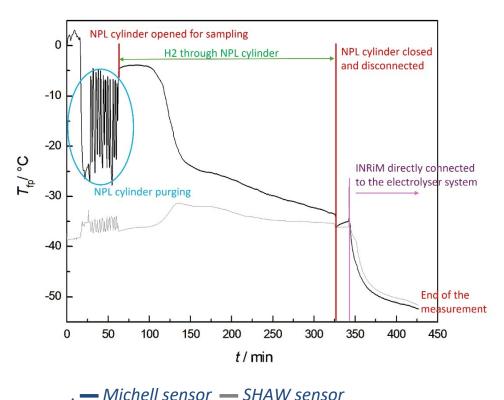
- Instruments were selected for the onsite demonstration at Turin Airport:
 - Sampling system (NPL)
 - O2 sensor (NPL)
 - Humidity sensor (INRIM)

Industrial demonstration - round 1

ENAPTER Alkaline Exchange Membrane

ENAPTER PSA drier

Industrial demonstration - round 1 results



- Sensor calibration (POLITO, NPL, INRIM)
- Online and onsite monitoring and calibration of an electrolyser(NPL, INRIM, ENVIPARK, POLITO, SAGAT)
- Sampling (NPL)
- Offline measurements (NPL, VSL)

Online measurements (humidity)

Offline measurements

	Alkaline electrolyser sample 1 (D923897)		ISO 14687:2019 Grade D	
Compound		Measured amount fraction and uncertainty (k = 2) [µmol/mol]		
Total non- methane hydrocarbons	0.0166 ± 0.0036	0.041 ± 0.007	2	
CH4	<0.005	<0.005	100	
CO ₂	0.060 ± 0.006	0.0192 ± 0.0025	2	
He	<3.5	<3.5	300	
H ₂ O	23.8 ± 1.4	11.5 ± 0.7	5	
NНз	<0.010	<0.010	0.1	
НСООН	0.0212 ± 0.0022	0.0084 ± 0.0019	0.2	
HCHO	< 0.010	< 0.010	0.2	
Total sulphur compounds	< 0.0010	< 0.0010	0.004	
CO	<0.015	<0.015	0.2	
N ₂	10.42 ± 0.55	2.38 ± 0.23	300	
<u>Ar</u>	0.096 ± 0.020	0.049 ± 0.010	300	
O ₂	11.2 ± 0.7	7.07 ± 0.44	5	
Total halogenated compounds	< 0.017	< 0.016	0.05	

Industrial demonstration - round 2

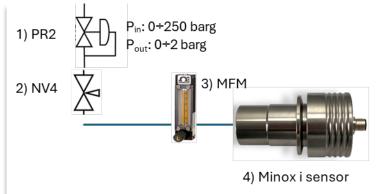
The demonstration was carried out at the Nippon Gases plant in San Salvo - Italy

Online and onsite monitoring at a hydrogen production plant

The San Salvo plant produces ultra-high purity hydrogen from natural gas through catalytic reforming and shift conversion. Impurities are removed via a single absorption system, and the hydrogen is purified using PSA before being distributed or stored. Steam is generated by recovering excess heat, and the final product is compressed into mobile containers. Quality is ensured through continuous analysis.

- Setup Definition: Connection layout and sampling points were defined.
- Risk Assessment: Conducted in relation to plant operations and project activities.
- System Modifications: Nippon Gases technicians implemented the required changes.

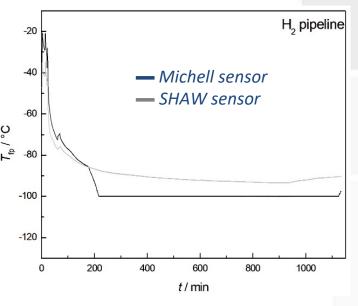
Instruments and sensors selection


Instruments are selected for the onsite demonstration @ Nippon Gases:

- Sampling system (NPL)
- O2 sensor (NPL)
- Humidity sensor (INRIM)
- Multi-component analyser (DTU)
- Calibration gas (NPL, CEM)

Industrial demonstration - round 2

- Online and onsite monitoring and calibration at SMR and pipeline @ Nippon Gases (Nippon Gases, NPL, INRIM, DTU)
- Sampling (NPL)
- Offline measurements (NPL, BAM, PTB) samples were analysed in NPL and current with BAM and PTB




Offline measurement

	Pipeline sample 1 (D923901)	Pipeline sample 2 (D923900)	SMR sample 1 (D819918)	SMR sample 2 (D819919)	14687:2019 Grade D	
Compound	Measured am	Measured amount fraction and uncertainty (k = 2) [μmol/mol]				
Total <u>non</u> <u>methane</u> hydrocarbons	<0.021	<0.021	<0.021	<0.021	2	
CH4	<0.006	<0.006	<0.006	<0.006	100	
CO ₂	0.0254 ± 0.0027	0.0308 ± 0.0033	<0.008	<0.008	2	
СО	<0.009	<0.009	<0.009	<0.009	0.2	
He	101 ± 6	96.8 ± 4.9	100 ± 6	100 ± 6	300	
H₂O	44.9 ± 2.7	21.7 ± 1.3	13.4 ± 0.8	7.57 ± 0.45	5	
NH₃	< 0.005	< 0.005	< 0.005	< 0.005	0.1	
НСООН	0.0084 ± 0.0020	0.0084 ± 0.0021	<0.008	<0.008	0.2	
HCHO	< 0.010	< 0.010	< 0.010	< 0.010	0.2	
Total sulphur compounds	<0.0007	<0.0007	<0.0007	<0.0007	0.004	
N ₂	1.63 ± 0.09	3.32 ± 0.18	0.40 ± 0.08	2.20 ± 0.12	300	
<u>Ar</u>	0.169 ± 0.017	0.159 ± 0.020	0.163 ± 0.018	0.166 ± 0.017	300	
O ₂	0.451 ± 0.040	0.181 ± 0.042	0.185 ± 0.042	0.173 ± 0.042	5	
Total halogenated compounds	<0.017	<0.018	<0.025	<0.019	0.05	

Online measurement (humidity)

Online measurement (Oxygen)

Lessons learnt and recommendations

Reference materials and analytical methods for the determination of impurities in H₂

- 1. Preparation of gravimetric and dynamic primary reference gas standards
 - Matrix/balance gases must be of the highest available purity
 - Inner surfaces of gas cylinders and tubing treated/coated to avoid adsorption
 - MFC must be calibrated to the respective matrix gases
- 2. Analysis of impurities
 - For sulphur analysis, **SCD detector** is recommended
 - GC carrier gas and dilution gas for the preparation of standards must be checked in advance for possible interferences

Sampling procedure and online hydrogen quality monitoring

- 3. Sampling procedure
 - Carefully plan the sampling operation, including location for sampling system, hydrogen venting and staff training
 - Sampling kit and its procedure should be validated (e.g. leaks), documented and properly applied
 - Purging and the effect of insufficient purging should be considered
- 4. Humidity measurements
 - Minimise the length of the sampling line to sensors/analysers and carefully check for leaks.
 - Wait enough time for the humidity sensors to reach a consistent, reading (e.g., several hours for sub-ppm water vapour measurement).
 - Install humidity sensors on independent sampling lines.

Inputs to ISO19880-8 and ISO 21087

Recommendations to ISO 19880-8

- Water and oxygen are impurities potentially over the threshold when hydrogen is produced by alkaline electrolysis. Installation of online devices to monitor H2O and O2 in hydrogen gas sourced from alkaline electrolysers is suggested to HRS
- Validation of the performance of sensors/analysers prior to their deployment on site
- Make scheduled calibrations for sensors and online analysers against known standards, especially before critical measurements or any process changes.

Recommendations to ISO 21087

- Carefully identify the purging requirement of the sampling device
- Identify methods to check for sufficient purging to remove moisture and air out of the sampling kit and cylinder, to ensure consistent measurement and operational safety.

National Metrology Institute

MET4H₂

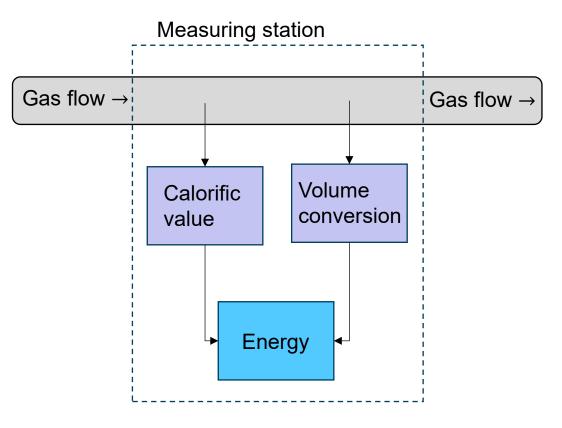
Best practices in the evaluation of the measurement uncertainty of quantities relevant to fiscal measurements along the hydrogen supply chain

Adriaan van der Veen, <u>Federica Gugole</u>, Kjetil Folgerø, Astrid Marie Skålvik, Jože Kutin, Gregor Bobovnik, Kurt Rasmussen, Loucie Cirkeline Nordhjort Mjølna, Edvardas Venslovas

Can we keep using the current gas infrastructure once H2 joins the game?

MET4H₂

A measuring station for fiscal metering often consists of


- Flow meter measuring the volume flow rate of the gas
- Gas chromatograph (GC) measuring the gas composition

The energy is then computed as

$$E = V \cdot H$$

V is the normal volume

H is the calorific value

How to calculate the uncertainty is also part of the infrastructure!

MET4H₂

Standards for the energy determination (ISO 15112, OIML R140) assume independence of measurement results

$$E_{tot} = \sum E_t = \sum V_t H_t$$

$$u^{2}(E_{\text{tot}}) = \sum u^{2}(E_{t}) = \sum E_{i}^{2}(u_{\text{rel}}^{2}(V_{t}) + u_{\text{rel}}^{2}(H_{t}))$$

This assumption might lead to costly errors once hydrogen is introduced in the gas grid

Improvements investigated in Met4H2:

- Correlations due to the instrumentation
- Temporal correlations in subsequent measurements due to the continuous underlying process
- 3. Error introduced by the numerical approximation

Improvements developed in the project

1. Correlations due to the instrumentation

- 2. Temporal correlations in subsequent measurements
- 3. Error introduced by the numerical approximation

1. Instrumental uncertainty induce correlations

Instruments at a metering station (e.g., flow meter, pressure sensor, etc ...) take tons of data every day

These data are all equally affected by, e.g., calibration uncertainty, installation effects, and repeatability

Therefore, the measurement results are mutually correlated, and these uncertainty sources should be included in the covariance

Correlation coefficients are generally large (0.7 or greater)

1. Furthermore, the same measurement result can be used to compute multiple quantities

$$V_0 = V(p, T) \frac{pT_0 Z_0}{p_0 TZ} = V(p, T) \cdot K$$

 $V(V_0)$ is the volume at actual (standard reference) conditions

 $p(p_0)$ is the pressure at actual (standard reference) conditions

 $T\left(T_{0}\right)$ is the temperature at actual (standard reference) conditions

 $Z\left(Z_{0}\right)$ is the compressibility factor at actual (standard reference) conditions

1. The compressibility factor at actual and at reference conditions are calculated assuming the same composition

The measured gas composition cause correlation between the two compressibility factors

The uncertainty in the gas composition should be propagated forward keeping in mind that the composition is subject to a natural constraint

Z is calculated using an appropriate equation of state (e.g., GERG-2008) Z_0 is calculated using ISO 6976

1. The uncertainty associated with the composition to Z can be calculated numerically

Assume the following gas composition

u(x)Component cmol mol⁻¹ cmol mol⁻¹ 3,280 0,022 Nitrogen Carbon 2,421 0,019 dioxide 84,335 Methane 0,111 Ethane 6,587 0,044 3,378 0,110 Propane

Construct a matrix such that for each column j = 1, ..., N - 1 the first j elements are

$$Q = \begin{bmatrix} -0.70711 & -0.40825 & -0.28868 & -0.22361 \\ 0.70711 & -0.40825 & -0.28868 & -0.22361 \\ 0 & 0.81650 & -0.28868 & -0.22361 \\ 0 & 0 & 0.86603 & -0.22361 \\ 0 & 0 & 0.89443 \end{bmatrix}$$

$$\sqrt{j(j+1)}$$

and the other elements are zero

1. The uncertainty associated with the composition to \boldsymbol{Z} can be calculated numerically

$$b_j = \frac{f(x_0 + hq_j) - f(x_0)}{h}$$
 $j = 1, ..., N-1$

where

- f is a validated implementation of the equation of state (e.g., TREND)
- x_0 is the measured composition
- \mathbf{q}_i is the *j*-th column from the previously generated matrix
- h is set equal to 1 % of the smallest amount fraction

The sensitivity coefficients are given by

$$c^T = bQ^T$$

1. Including the correlations leads to an increase of about 30 % in the uncertainty of the conversion factor K

The correlation coefficient between Z and Z_0 is 0,011 for this composition

The compressibility factor is correlated also with temperature and pressure (this can be calculated with the standard numerical approach of the GUM)

Combining the relative uncertainties with the covariances lead to $u_{rel}(K) = 0.13$ % which is 30 % larger than the case without covariances

Note. In case of energy calculations, the compressibility factor is correlated also with the calorific value!

Improvements developed in the project

1. Correlations due to the instrumentation

- 2. Temporal correlations in subsequent measurements
- 3. Error introduced by the numerical approximation

2. We developed a procedure to evaluate dependencies in time series using auto-regressive moving average (ARMA) models

Phenomena such as the injection or withdrawal of gas may cause MET4H2 dependencies between subsequent measurements of the same quantity

Such dependencies should be analysed by means of a suitable time series model (e.g., ARMA models, wavelets, ...)

ARMA models are suitable to describe statistically stationary time series and assume that the error terms of the model behave like white noise

These autocorrelations are different from the instrumental correlations!

2. Time series analysis: some useful statistical tools

AR: autoregressive; expresses the current value as a linear combination of a finite number of past values of the same variable

MA: moving average; describes the dependence of the current value on the current and past values of another variable

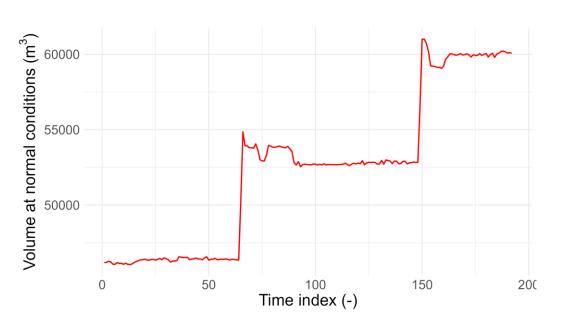
ARMA: autoregressive moving average

ACF: autocorrelation function; measures the correlation between observations at different distances apart

PACF: partial ACF; computes the correlation between two variables with the linear effect on a third variable removed

(Statistically) weakly stationary series: i) finite variance process with constant mean; ii) the auto-covariance depends only on the distance between two data points

2. Before using a time series model, you should check the properties of your data

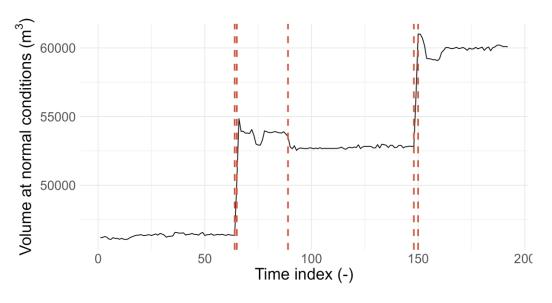


Look for missing data or for anomalous values

2. Plot the empirical probability distribution function

3. Are the data normally distributed? → Shapiro test

Example of recorded volume data.


2. If your data do not meet the requirements, you might want to restrict your analysis to a sub-series

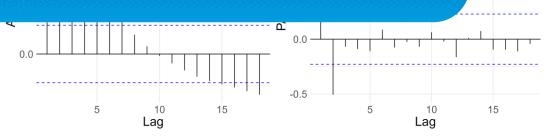
Change point methods:

- BinSeg (binary segmentation)
 - Approximate method
 - Indicated to detect significant jumps
- PELT (Pruned Exact Linear Time)
 - Exact method
 - Detects also more subtle changes

You should still check the properties of the selected subseries before proceeding with the analysis!

Example of segmentation results using BinSeg.

2. Remember the physics behind your data when selecting a mathematical representation of your data


Nalue [MJ/m²] 37.20

Tools to select an ARMA model:

MET4H2

- ACF and PACF
- 2. Prop Beware! Fitting a model does not imply that your proc model is a good representation of your data!
- Selection criteria such as Akaike's Information Criterion or Bayesian Information Criterion

Example of stationary subseries of the calorific value data, its ACF and PACF. In this case, an AR(2) model is the best candidate.

2. The evaluation of uncertainty using time series analysis does **not** include the instrumental measurement uncertainty

MET4H₂

The law of propagation of uncertainty (LPU) for correlated input quantities

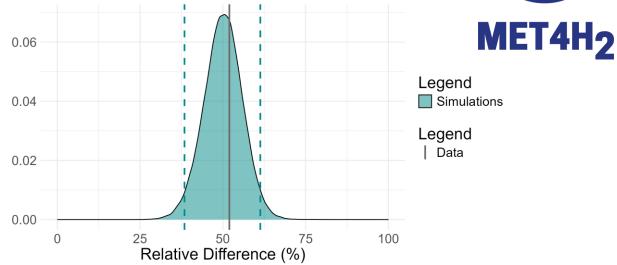
$$u_c^2(y) = \sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} u(x_i, x_j)$$

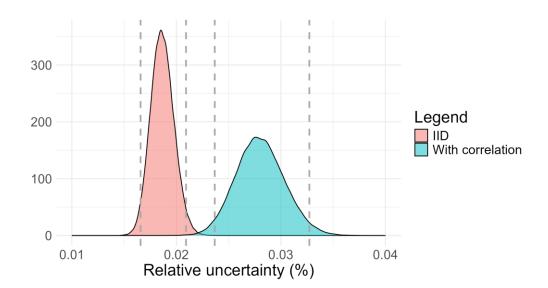
$$E_{tot} = \sum_{t=1}^N E_t = \sum_{t=1}^N V_t H_t$$

Serial correlations influence only the uncertainty obtained by the statistical data analysis

Correlations due to, e.g., instrumentation are treated separately (see 1.)

2. The serial correlation increases the estimated type A uncertainty by circa 50 %


Relative difference calculated on simulated data


$$\frac{u_{\rm cor}(E_{\rm tot}) - u_{\rm iid}(E_{\rm tot})}{u_{\rm iid}(E_{\rm tot})} \cdot 100\%$$

Relative uncertainty $x \in \{cor, iid\}$

$$u_{x,\text{rel}}(E_{\text{tot}}) = \frac{u_x(E_{\text{tot}})}{E_{\text{tot}}} \cdot 100\%$$

Including the serial correlation increases the uncertainty typically by 50 %

Improvements developed in the project

1. Correlations due to the instrumentation

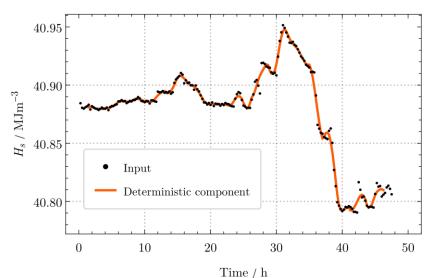
- 2. Temporal correlations in subsequent measurements
- 3. Error introduced by the numerical approximation

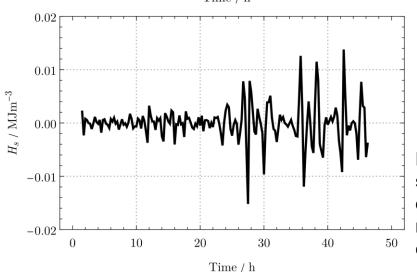
3. We developed a method to determine the numerical approximation error by separating the signal's components

The uncertainty of aggregated quantities (e.g., average, total) depends both on the numerical procedure and on the observed quantities over time

Usually observed quantities have both a deterministic and a random component that change simultaneously

Time domain filtering techniques can be used to separate these components, since they generally act on different time scales


3. Separation of the deterministic and random components



Savitzky-Golay filtering: moving average method based on least squares polynomial fitting

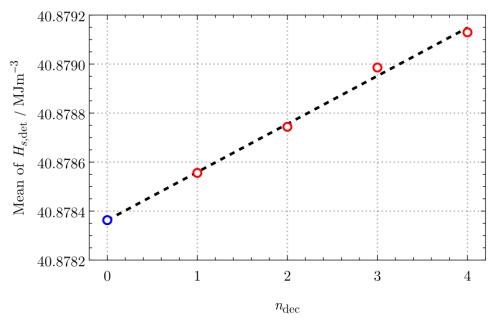
Parameters:

- Order of the smoothing polynomial
 - Try to avoid over- and under-fitting
- Number of samples in the smoothing window

Example of signal separation into deterministic and random components.

3. The uncertainty related to the numerical integration of the deterministic signal is estimated using the decimation method

Decimation by a factor m means that only every m^{th} sample is taken


MET4H₂

Calculate the desired quantity *q* for different decimation factors

Estimate by least squares

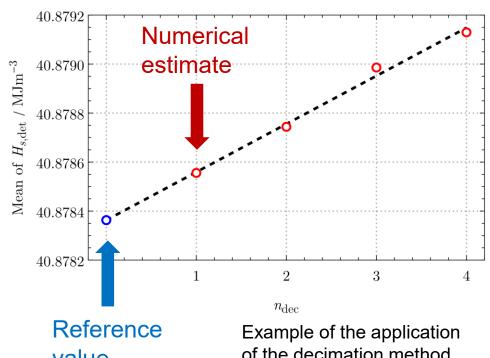
$$q(m) = a \cdot m + b$$

q(m = 0) = b is the reference value

Example of the application of the decimation method.

3. The uncertainty related to the numerical integration of the deterministic signal is estimated using the decimation method

The numerical integration error is


$$e_{det} = q(1) - q(0) = 0.19 \text{ kJ/m}^3$$

with associated uncertainty

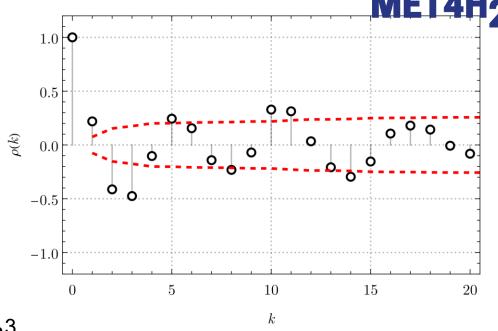
$$u(e_{det}) = s(q(0)) = 0.035 \text{ kJ/m}^3$$

Combined, they give

$$u_{det} = \sqrt{\left(\frac{e_{det}}{\sqrt{3}}\right)^2 + u^2(e_{det})} = 0,12 \text{ kJ/m}^3$$

of the decimation method.

3. The uncertainty related to the numerical integration of the random signal is estimated by statistical analysis



Without correlation

$$u_{ran}^{(uncor)} = \frac{s(q_{ran,i})}{\sqrt{N}} = 0,25 \text{ kJ/m}^3$$

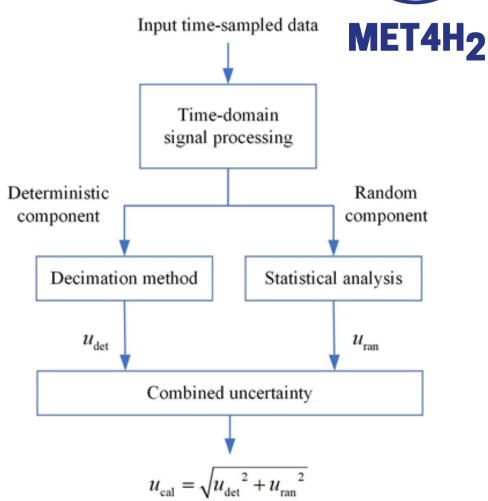
With correlation

$$u_{ran}^{(cor)} = \frac{s(q_{ran,i})}{\sqrt{N}} \sqrt{1 + \frac{2\sum_{k=1}^{N_{cor}}(N_{ran}-1)\rho(k)}{N_{ran}}} = 0,30 \text{ kJ/m}^3$$

Example ACF of the random component.

The number of auto-correlation to be considered could be determined as the smallest l for which $\rho(l) > 0$ and $\rho(l+1) < 0$. In this case l = 1.

3. The uncertainty evaluated by separating the two components is almost 10 times smaller!


The uncertainties of the two components are combined using the LPU:

$$u_c^{(uncor)} = \sqrt{u_{det}^2 + u_{ran}^{(uncor)^2}} = 0,28 \text{ kJ/m}^3$$

$$u_c^{(cor)} = \sqrt{u_{det}^2 + u_{ran}^{(cor)^2}} = 0,32 \text{ kJ/m}^3$$

Without separate evaluation

$$u_c = \frac{s(q_i)}{\sqrt{N}} = 2,94 \text{ kJ/m}^3$$

1. Correlations due to the instrumentation

 Inclusion of the instrumental correlation leads to an increase of 30 % in the uncertainty associated to the volume conversion factor

2. Temporal correlations in subsequent measurements

Including the serial correlation leads to an increase of circa 50 % in the type A uncertainty of the total energy

3. Error introduced by the numerical approximation

Separation into deterministic and random component leads to an uncertainty
 10 times smaller for the average calorific value

Useful references

ISO 15112 Natural gas – Energy determination. ISO, International Organization for Standardization

EN 1776 Gas infrastructure – Gas measuring systems – Functional requirements. CEN, European Committee for Standardization

OIML R 140 Measuring systems for gaseous fuel. OIML, International Organization for Legal Metrology

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. *Evaluation of measurement data – Guide to the expression of uncertainty in measurement*, JCGM 100:2008, BIPM, 2008

F. Gugole, M. Li, and A. M. H. van der Veen. *On the autocorrelation of measurement results for gas volume and calorific value in fiscal metering in gas grids*, EPJ Web Conferences (2025), https://doi.org/10.1051/epjconf/202532309003

J. Kutin, G. Bobovnik, F. Gugole, A. M. H. van der Veen. *Evaluation of uncertainty associated with totalization of time-sampled data in gas quantity and energy measurements*, Measurement: Sensors (2025), https://doi.org/10.1016/j.measen.2024.101572

A. M. H. van der Veen et al. Best practices in the evaluation of the measurement uncertainty of quantities relevant to fiscal measurements along the hydrogen supply chain. (2025)

A. M. H. van der Veen et al. *Metering uncertainty for custody transfer of hydrogen for transport, heat, and storage.* (2025)

Dr. Federica Gugole Data Science and Modelling

fgugole@vsl.nl

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EURAMET. Neither the European Union nor the granting authority can be held responsible for them.

The project has received funding from the European Partnership on Metrology, co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.

EUROPEAN PARTNERSHIP

METERING UNCERTAINTY FOR CUSTODY TRANSFER OF HYDROGEN FOR TRANSPORT, HEAT, AND STORAGE

M₃6 Workshop, September, 2025

Adriaan van der Veen, Federica Gugole, **Kjetil Folgerø**, Lea Stark, Astrid Marie Skålvik, Jože Kutin, Gregor Bobovnik, Kurt Rasmussen, Loucie Cirkeline Nordhjort Mjølna, Edvardas Venslovas, Eric Starke

EXAMPLES OF METERING UNCERTAINTY EVALUATIONS ACROSS VARIOUS SEGMENTS OF THE HYDROGEN SUPPLY CHAIN

Objective

- Demonstrate how the methods described in the best-practice guide from Met4H2 can be implemented using real-world data
- Illustrate how dependencies between measurement results can be evaluated

Examples

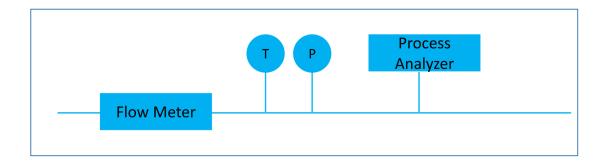
- Gas grid Temporal correlations and numerical approximations
- Industrial supply chain Monte Carlo based uncertainty analysis
- 3. Refuelling station Qualitative analysis

Met₄H₂ report

Metering uncertainty for custody transfer of hydrogen for transport, heat, and storage

Adriaan M.H. van der Veen¹, Federica Gugole¹, Kjetil Folgerø², Lea Starck², Astrid Marie Skålvik², Jože Kutin³, Gregor Bobovnik³, Kurt Rasmussen⁴, Loucie Cirkeline Nordhjort Mjølna⁴, Edvardas Venslovas⁵, and Eric Starke⁶

¹VSL, Data Science & Modelling Group, Thijsseweg 11, 2629 JA Delft, The Netherlands ²NORCE Research, Nygårdsgaten 112, 5008 Bergen, Norway ³Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia


⁴FORCE Technology, Park Alle 345, DK-2605 Brøndby, Denmark
 ⁵Justervesenet, Fetveien 99, 2007 Kjeller, Norway
 ⁶Endress+Hauser SICK, Bergener Ring 27, 01458 Ottendorf-Okrilla, Germany

ILLUSTRATIVE EXAMPLE

Synthetic example:
Blend of hydrogen and natural gas

- Energy content calculated from volume flow rate at reference conditions and the calorific value of the gas
- Volume flow rate at reference conditions calculated from the measured volume flow rate using a conversion factor (K)
- Conversion factor depends on gas composition, temperature and pressure
- Calorific value and conversion factor depend on gas quality => correlation

$$\dot{E}_i = \dot{V}_{0i} H_{vi}$$

$$\dot{V}_{0i} = \frac{p_i T_0 Z_{0i}}{p_0 T_i Z_i} \dot{V}_i$$

ILLUSTRATIVE EXAMPLE

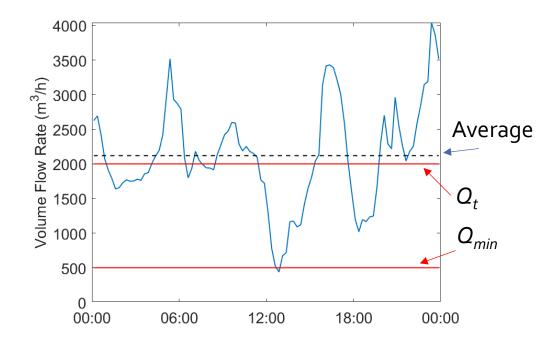
$$\dot{V}_{0i} = \frac{p_i T_0 Z_{0i}}{p_0 T_i Z_i} \dot{V}_i$$

$$\dot{E}_i = \dot{V}_{0i} H_{vi}$$

- Importance of correlations
 - Composition influences both
 Volume conversion and Calorific value

- Uncertainty analysis on daily averages
 - Ignoring correlations between $\overline{\dot{V}_0}$ and $\overline{H_v}$: 0.75 %
 - Including correlations between $\overline{\dot{V}_0}$ and $\overline{H_v}$: 0.89 %

Volume Flow Rate (m³/h)
000
000 Average 06:00 12:00 18:00 00:00 00:00 34.7 Average 34.3 34.2 00:00 06:00 12:00 18:00 00:00

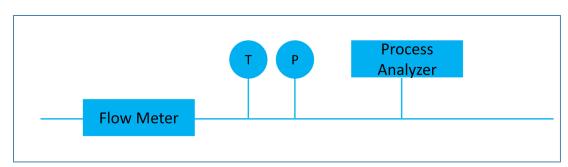

4000

A. M. H. van der Veen, K. Folgerø, F. Gugole "Measurement uncertainty in the totalisation of quantity and energy measurement in gas grids" (Gases) Gases 2025, 5(2), 7; https://doi.org/10.3390/gases5020007

ILLUSTRATIVE EXAMPLE

- Importance of time-resolution
 - Flow rate is partly below transition rate
 => increased uncertainty
 - Analysis of averaged data vs 15-min interval
- Uncertainty analysis on daily averages
 - Ignoring correlations between Vo and Hv: 0.75 %
 - Including correlations between Vo and Hv: 0.89 %

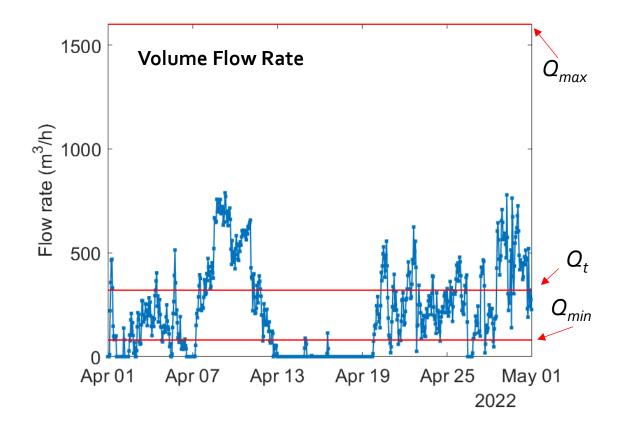
- Uncertainty analysis on 15 min data
 - Including correlations between Vo and Hv: 0.97 %
 assuming full correlations between succeeding measurements

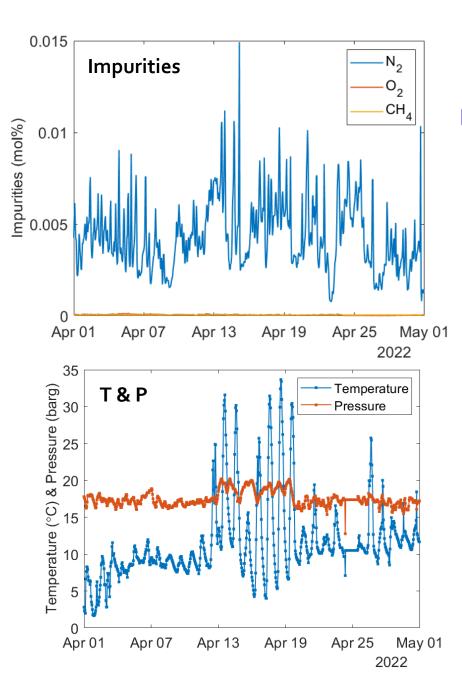

Input variable	Range	Uncertainty
T	293.15 K	0.3 K
p	50 bar	0.1 bar
	$Q_{V,t} < Q_V < Q_{V,max}$	0.5 %
Q_V	$Q_{V,min} < Q_V < Q_{V,t}$	1.0 %
	$Q_V < Q_{V,min}$	2.0 %

Component	x	U(x)(k=2)
	$cmol mol^{-1}$	$cmol mol^{-1}$
nitrogen	0.148	0.0025
carbon dioxide	0.0566	0.0032
methane	96.3954	0.2400
ethane	3.0545	0.0250
propane	0.2251	0.0053
iso-butane	0.0356	0.0010
n-butane	0.0315	0.0007
iso-pentane	0.0075	0.0004
n-pentane	0.0043	0.0004
n-hexane	0.0115	0.0010
helium	0.030	0.0025
hydrogen	15.2 - 16.8	0.500

2. INDUSTRIAL SUPPLY: MONTE CARLO BASED UNCERTAINTY ANALYSIS

- Evaluation of uncertainty in
 - Energy flow rate
 - Accumulated energy over a month




- Experimental data from a metering station at an industrial cluster
 - Volume rate (10" Turbine Meter)
 - Temperature
 - Pressure
 - Composition (Gas Chromatograph)

Averaged values over 60-minute intervals

No information about instrumentation, installation conditions, calibration procedures, or maintenance practice => Uncertainty analysis based on typical performances and reasonable assumptions

EXPERIMENTAL DATA

2. ASSUMPTIONS

Rough uncertainty assumptions

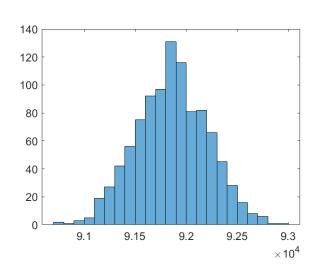
Variability within 6o-minute interval is not considered

• Hydrogen composition calculated bydifference (no need for normalisation)

Uncertainty assumptions (k=2)

Input variable	Range	Uncertainty
T		0.2 K
p		0.07 bar
	$320 \le Q_V \le 1600$	0.6%
Q_V	$80 \le Q_V \le 320$	1.2%
	$Q_V < 80$	2.4%
x_{N_2}		0.001 cmol/mol

METHOD

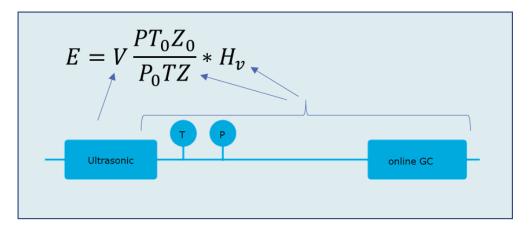


- Aim: Calculate uncertainty in Energy flow rate
- Monte Carlo method applied
 - Latin hypercube sampling
 - 1000 iterations for each time interval
- Parameters varied according to their input uncertainties /distributions
 - Volume flow rate , Temperature, Pressure, Composition (N2)
- Parameters calculated (for all iterations)
 - Energy flow rate, Z, Z_o, Calorific value, Temperature, Pressure
 - Correlations between Z, Z_o, T, P, H_v inherently present,
 as all values are derived from identical composition iterations
- Uncertainty calculated from distribution of output-parameters

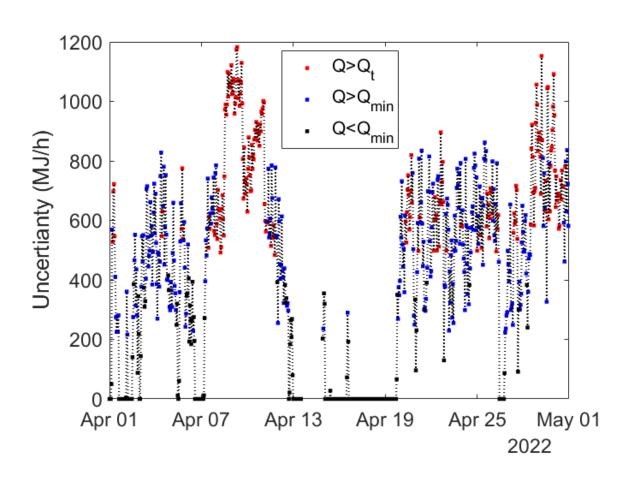
$$\dot{V}_{0i} = \frac{p_i T_0 Z_{0i}}{p_0 T_i Z_i} \dot{V}_i$$

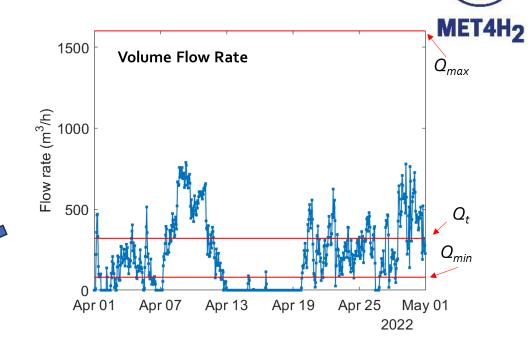
$$\dot{E}_i = \dot{V}_{0i} H_{vi}$$

$$E(t_N) = \Delta t \sum_{i=1}^{N} \dot{E}_i$$


SOFTWARE

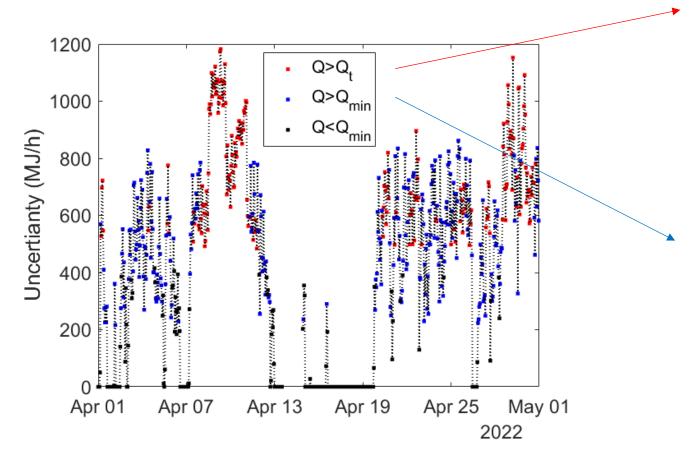
Features

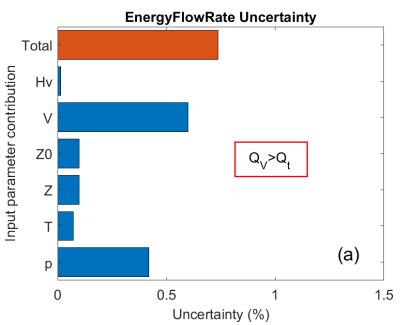

- Framework implemented in Python
- Includes EoS calculations using AGA8 and GERG-2008
 - REFPROP (Trend, CoolProp, pyforfluid)
- Combines Monte-Carlo and analytical calculations
- Modular framework ready for addition of new modules
- Input data provided in spreadsheet-format (Excel)
- Output data in spreadsheet-format (Excel)


Example: USM metering station

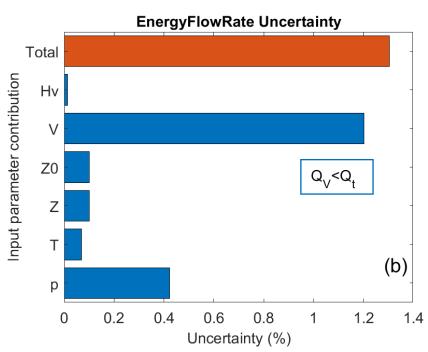
Sheets	Description
 Configuration	Metering station configuration
Process Data	Flow rates, Temperature, Pressure vs time
Composition	Fluid composition vs time
USM_unc	Input data for USM uncertainty analysis
T_unc	Input data for temperature transmitter uncertainty analysis
P unc	Input data for pressure transmitter uncertainty analysis
Composition_unc	Uncertainty data for composition 10

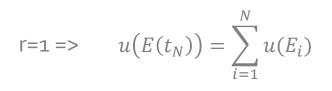
RESULTS: ENERGY FLOW RATE



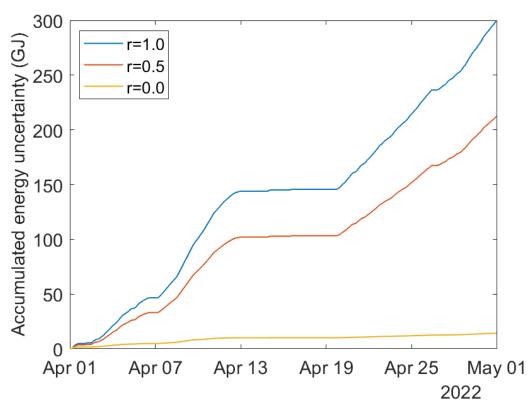


- Pressure
- Composition


RESULTS: ENERGY FLOW RATE


$$\frac{u(E_i)}{E} = \sqrt{(\frac{u(p_i)}{p_i})^2 + (\frac{u(T_i)}{T})^2 + (\frac{u(Z_i)}{Z_i})^2 + (\frac{u(Z_{0i})}{Z_{0i}})^2 + (\frac{u(\dot{V_i})}{\dot{V_i}})^2 + (\frac{u(H_i)}{H_i})^2 + (\frac{u_{corr,i}}{E})^2}$$

RESULTS: ACCUMULATED ENERGY



$$r=0 \Rightarrow u(E(t_N)) = \sqrt{\sum_{i=1}^{N} u^2(E_i)}$$

 Need to include temporal correlations between succeeding measurements

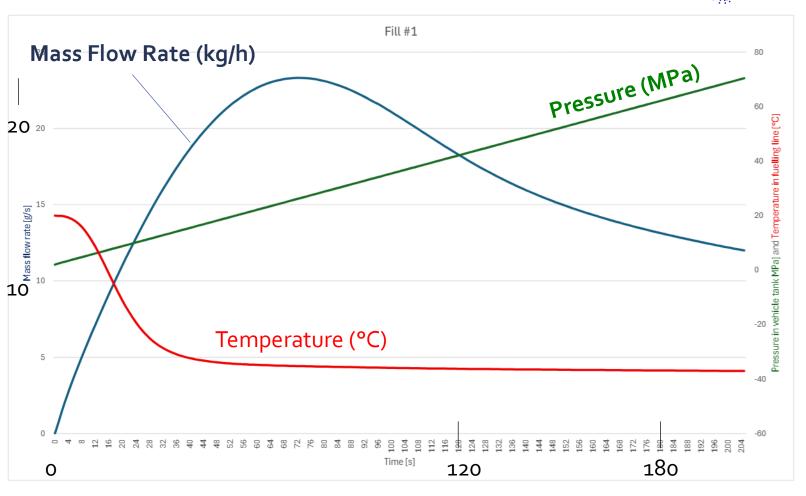
$$u^{2}(E(t_{N})) = \sum_{i=1}^{N} u^{2}(E_{i}) + \sum_{i=1}^{N-1} r_{i,i+1} u(E_{i}) u(E_{i+1})$$

- Non-stationary data makes it difficult to apply ARMA method
- Example illustrates importance of estimating r
- Need for robust methods to calculate serial correlation dynamic measurements

3. REFUELLING STATION: QUALITATIVE ANALYSIS

Filling Type	Typical Pressure	Vehicle Type	Hydrogen Capacity	Refuelling Duration
H ₃₅	350 bar	Heavy-duty (buses, trucks)	>10 kg	10—15 minutes
H70	700 bar	Light-duty (cars)	4–7 kg	3–5 minutes

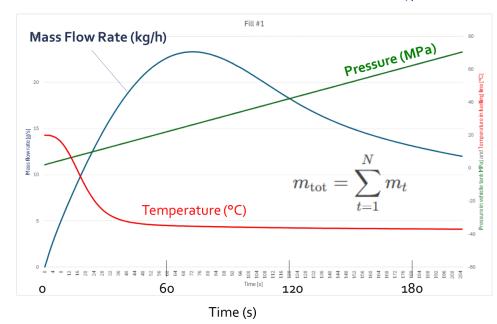
• Measurand: Total mass delivered during refuelling


$$m_{ ext{tot}} = \sum_{t=1}^{N} m_t$$

TYPICAL FILLING PROFILE (SIMULATED)

- Short time scale
- Transient mass flow rate
- Rapid temperature decrease

$$m_{ ext{tot}} = \sum_{t=1}^N m_t$$



Time (s)

UNCERTAINTY CALCULATION

- Instrumental correlations
 - Uncertainty due to e.g. calibration & installation effects
 - Can be esimtaed by detailed uncertianty analysis dividing uncertianties in to correlated, partly correlated and uncorrelated uncertainties
- Totalization uncertainty
 - Numerical effect of time sampling
 - May be estimated by splitting into random and deterministic components (using Savitzky-Golay filtering)
- Temporal effects
 - Typically a non-stationary data series
 - ARMA-models not suited to calculate correlations
- Need for robust methods to calculate serial correlation coefficient for dynamic measurements

CONCLUSION

• Examples on how to apply methods from the best-practice guide presented

• Illustrates the importance to include (instrumental and temporal) correlations

- Robust methods needed to evaluate highly dynamic responses
 - Will be investigated in SmartGasNet project recently started

CONTRIBUTORS

VSL Adriaan van der Veen, Federica Gugole

NORCE Kjetil Folgerø, Lea Stark, Astrid Marie Skålvik

Univ. of Ljubjana Jože Kutin, Gregor Bobovnik

FORCE Kurt Rasmussen, Loucie Cirkeline Nordhjort Mjølna

Justervesenet Edvardas Venslovas

Endress + Hauser SICK Eric Starke

